» » » Николай Лучник - Невидимый современник


Авторские права

Николай Лучник - Невидимый современник

Здесь можно скачать бесплатно "Николай Лучник - Невидимый современник" в формате fb2, epub, txt, doc, pdf. Жанр: Биофизика, издательство Молодая гвардия, год 1968. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Николай Лучник - Невидимый современник
Рейтинг:
Название:
Невидимый современник
Издательство:
Молодая гвардия
Жанр:
Год:
1968
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Невидимый современник"

Описание и краткое содержание "Невидимый современник" читать бесплатно онлайн.



Угроза здоровью людей в связи с повышением уровня естественного радиоактивного фона…

Новые методы лечения рака и других тяжелых заболеваний…

Радиационная угроза в современных войнах…

Борьба с вредными насекомыми…

Наиболее эффективные методы диагностики в медицине…

Изучение тончайших процессов обмена веществ…

Так же как некогда пар и электричество, так теперь ионизирующие лучи стали неотъемлемой частью современной техники, науки, повседневной жизни.

О радиобиологии — науке, которая занимается всеми этими проблемами, рассказывает доктор биологических наук Н. Лучник, первая книга которого — «Почему я похож на папу» — получила широкое признание читателей.






Выстрелом из винтовки нетрудно пробить доску. Но если ту же пулю бросить рукой или даже метнуть из рогатки, с доской ничего не произойдет. Это и понятно: рогатка не может дать пуле такой большой энергии, как заряд пороха.

Хотя физическая природа рентгеновых и световых лучей одинакова, первые свободно проходят через преграды, совершенно непрозрачные для вторых. Ведь энергия рентгеновых лучей во много тысяч раз больше энергии лучей света. Именно это свойство рентгеновых лучей и используется для «просвечивания»: в медицине — для рентгенодиагностики, в технике — для дефектоскопии.

Это очень важное свойство, но не оно нас сейчас интересует. Рентгеновы лучи проходят насквозь не на сто процентов. Если бы они все проходили насквозь, то и для просвечивания не годились бы. Никакого рентгеновского изображения не получалось: экран светился бы равномерно, а фотографическая пластинка равномерно темнела. Но воздух поглощает рентгеновы лучи очень слабо, мягкие ткани — сильнее, кости еще сильнее. Потому-то снимок дает и контуры тела, и очертания органов, и изображение скелета.



Действие на вещество может оказать не та часть лучей, что прошла насквозь, а та, которая в нем поглотилась. Значит, нужно посмотреть, что происходит при поглощении рентгеновых лучей веществом.

Любая волна обладает свойствами частицы, а любая частица — свойствами волны. При поглощении рентгеновых лучей веществом удобнее рассматривать их как частицы (кванты). С этой точки зрения рентгеновы лучи — поток частиц энергии (не имеющих массы покоя), несущихся со скоростью света. Большинство этих частиц свободно пронизывает вещество, пролетая мимо атомов. Но немногие (а чем плотнее вещество, тем, естественно, таких частиц больше) поглощаются атомами.

При поглощении квантов атомами происходит процесс, обратный тому, что мы видели в рентгеновской трубке при рождении лучей. Атом получает большую энергию, которая является лишней, и освобождается от нее. Энергия передается электрону, который отрывается от атома и начинает собственное путешествие в недрах вещества. Такой электрон носит название фотоэлектрона.

Описанный процесс характерен для рентгеновых лучей со сравнительно невысокой энергией квантов. Если же энергия больше, электрон уже не способен принять ее всю, и избыток снова излучается в виде кванта с соответственно меньшей энергией, который ведет себя так же, как и его «родитель»: летит сквозь вещество, пока не поглотится каким-нибудь атомом. Такой электрон, несущий не всю энергию, полученную атомом, а только часть ее, называют комптоновским (по имени английского ученого, сотрудника Резерфорда, изучившего этот процесс), или просто комптон-электрон. Фото- и комптон-электроны объединяют под общим названием вторичных электронов. По своему поведению в веществе они ничем не отличаются.

При взаимодействии рентгеновых квантов с веществом идут и некоторые другие процессы. Но они существенного значения для радиобиологии не представляют. Например, при взаимодействии рентгеновых квантов очень высокой энергии с тяжелыми атомами (которых в живом веществе почти нет) наблюдается презанятнейший процесс рождения пар. Его трудно понять: ничего подобного в нашем макромире мы не наблюдаем, но процесс идет в полном соответствии с законами физики — законом сохранения и с законом эквивалентности энергии и массы. Невесомый квант при торможении порождает две частицы, обладающие массой: электрон и позитрон (позитрон — частица во всем подобная электрону, но имеющая не отрицательный, а положительный заряд). Энергия превратилась в вещество.


Путешествие электрона

Рождением вторичных электронов процесс поглощения энергии не заканчивается, так как они несут значительную энергию и движутся внутри вещества.

Их путь гораздо короче, чем у рентгеновских квантов, но богаче происшествиями. Это и естественно, электрон отягощен массой и движется значительно медленнее. Ему гораздо труднее продираться через скопище атомов. Но дело не только в скорости. Электрон в отличие от кванта заряжен, заряжены и частицы вещества, через которые он путешествует. А электрические заряды энергично взаимодействуют друг с другом.

Итак, вторичный электрон проходит через вещество. При этом он взаимодействует с атомами, встречающимися на его пути. Каждому он отдает часть своей энергии, а отдав, начинает двигаться медленнее и несколько изменяет направление полета. Чем меньше энергия электрона, тем чаще взаимодействия. Израсходовав весь излишек энергии, электрон останавливается, соединившись с каким-нибудь атомом.

Что же происходит с атомами, которым вторичный электрон отдал часть энергии?

Если энергия, отданная вторичным электроном атому, невелика, она идет на то, чтобы поднять один из электронов на более высокую орбиту. Чем выше полученная энергия, тем дальше электрон уходит от ядра (на одну из разрешенных орбит!). Такой атом называется возбужденным. Он гораздо легче вступает в химические реакции, чем не возбужденный.

Свойством возбуждать атомы обладают не только электроны, рождающиеся при облучении вещества рентгеновыми лучами, но и ультрафиолетовые лучи и даже (хотя и в гораздо меньшей степени) видимый свет.

Но, отдавая энергию атомам, электроны не только возбуждают их. Часто энергия, переданная атому, настолько велика, и его электрон так далеко уходит от ядра, что вообще теряет с ним связь. Атом, потеряв электрон, становится заряженным положительно. Образуется, как говорят физики, пара ионов: отрицательный (ушедший электрон) и положительный (атом, лишенный электрона). Ионы обладают еще более высокой химической активностью, чем возбужденные атомы. Процесс отрыва электрона от атома носит название ионизации. (Наконец-то! До сих пор мне приходилось довольно трудно, потому что часто было нужно слово, которого я не мог употреблять, не объяснив, а теперь смогу это делать.)

Ни свет, ни ультрафиолетовые лучи, ни инфракрасные, ни радиоволны не способны вызывать ионизацию. Для этого им не хватает энергии. А лучи высоких энергий могут. Поэтому их называют ионизирующими.

Радиобиология как раз и занимается биологическим действием ионизирующих излучений.


Следы-невидимки

Электрон невозможно увидеть под микроскопом. И никогда не удастся как раз потому, что он не имеет цвета. Поскольку диаметр электрона во много раз меньше длины световой волны, его принципиально невозможно обнаружить оптическими методами.

Но хотя электрон нельзя разглядеть и под микроскопом, следы его мы можем отлично видеть невооруженным глазом. Если камеру заполнить перенасыщенным паром, а затем быстро изменить ее объем, она наполнится туманом. Если же перед этим внутри камеры пробегал электрон, мы увидим туманный след. Частицы тумана осели на ионизированных (электрически заряженных) атомах воздуха. Каждая капелька воды вдоль следа (такие следы называют треками) соответствует ионизированному атому. Как следы человека-невидимки из романа Герберта Уэллса выдавала налипшая к ногам грязь, так и следы электрона можно обнаружить по капелькам тумана.



Этот прибор есть в любой лаборатории, занимающейся изучением заряженных частиц. Он называется камерой Вильсона — по имени ученого, который ее изобрел. На фотографиях, полученных с помощью камеры Вильсона, видно, что след электрона в начале его пути состоит из ясно различимых капелек и кажется совершенно прямым. Дальше вдоль трека капельки располагаются все чаще, путь все больше искривляется, а в конце его мы видим плотный «хвост» из совершенно сливающихся частиц тумана.

Все это понятно. Ведь по мере движения электрон теряет энергию и постепенно замедляется, а чем медленнее он движется, тем с большим числом атомов успевает провзаимодействовать.

Рассматривая снимок более внимательно, мы замечаем, что трек электрона не вполне гладкий: то здесь, то там от него отходят коротенькие веточки. Они образовались в тех местах, где отрицательный ион (такой же электрон) получал достаточно большую энергию, чтобы, в свою очередь, произвести несколько ионизаций. Это так называемые дельта-лучи.

Итак, в камере Вильсона следы электрона обнаруживаются благодаря тому, что он производит ионизации, то есть создает электрический заряд. И, нужно заметить, большинство способов обнаружения и измерения ионизирующих частиц так или иначе используют электрические методы.

Правда, электрические методы не единственная возможность. Излучение можно обнаружить и с помощью фотографической пластинки и по свечению флюоресцирующего экрана. Но в обоих случаях ионизация не обязательна. И свечение экрана и почернение пластинки вызывается и с помощью простых возбуждений. Потому-то и существует обычная фотография!


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Невидимый современник"

Книги похожие на "Невидимый современник" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Николай Лучник

Николай Лучник - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Николай Лучник - Невидимый современник"

Отзывы читателей о книге "Невидимый современник", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.