» » » » Луис Арталь - Том 19. Ипотека и уравнения. Математика в экономике


Авторские права

Луис Арталь - Том 19. Ипотека и уравнения. Математика в экономике

Здесь можно скачать бесплатно "Луис Арталь - Том 19. Ипотека и уравнения. Математика в экономике" в формате fb2, epub, txt, doc, pdf. Жанр: Математика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Луис Арталь - Том 19. Ипотека и уравнения. Математика в экономике
Рейтинг:
Название:
Том 19. Ипотека и уравнения. Математика в экономике
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Том 19. Ипотека и уравнения. Математика в экономике"

Описание и краткое содержание "Том 19. Ипотека и уравнения. Математика в экономике" читать бесплатно онлайн.



Книга посвящена использованию математики в экономике и анализу роли точных наук в экономическом развитии.

Авторы рассказывают об основных математических инструментах, используемых в экономическом анализе. Их цель — помочь читателю научиться принимать верные решения в вопросах, касающихся инвестирования, размещения сбережений и кредитования.

Создатели книги затрагивают такие важные темы, как производство и рынок, спрос и предложение, международная торговля, ценообразование, рынок капитала и фондовые биржи. Безусловно, этот разговор немыслим без строгой красоты математики.






Разделив обе части равенства на С0, получим


Затем, разделив числитель и знаменатель на (1i)n, имеем:



Перейдем к логарифмам:

Вынесем число лет n в левую часть:



Подставив в эту формулу значения a, и С0, получим:



Если мы составим график погашения кредита, то увидим, что на 11-м году остаток долга к уплате будет составлять 1073,73 евро, что соответствует 21,5 % платежа. Следовательно, срок кредита составляет 11 лет плюс 22 % года, то есть 11 лет и 80 дней.



График платежей по реструктуризированному кредиту.


Ипотечные кредиты, или просто ипотека, — это кредиты с фиксированной суммой платежа и переменной процентной ставкой, которая зависит от колебаний базовой процентной ставки. При изменении процентной ставки составляется новый график платежей при том же сроке кредита. Как правило, процентная ставка по ипотеке равна официальной базовой процентной ставке, увеличенной на несколько пунктов или десятых долей пункта. В качестве базовой процентной ставки обычно используется межбанковская процентная ставка — например, EURIBOR для еврозоны или процентная ставка, по которой продаются и приобретаются ипотечные кредиты на кредитном рынке. При подписании ипотечного договора указывается базовая процентная ставка (EURIBOR за один квартал, один год и т. д.), а также число пунктов, на которые она увеличивается, и сроки пересмотра процентной ставки по кредиту (раз в год, раз в квартал и т. д.).

Изменение процентной ставки по ипотечному кредиту может стать неприятным сюрпризом. Например, если семья взяла ипотечный кредит на сумму 300 000 евро сроком на 20 лет с процентной ставкой, равной базовой процентной ставке (например, EURIBOR) плюс 0,5 пункта, когда эта ставка равнялась 2 % (в этом случае процентная ставка по кредиту составит 2,5 % годовых), то сумма годовых платежей равняется 19244,14 евро, то есть 1603,68 евро в месяц (эта сумма получена делением годовой суммы платежей на 12). Но если базовая процентная ставка возрастет до 5 %, то при следующем пересмотре ставка по кредиту повысится до 5,5 % годовых, и сумма годовых платежей составит уже 25103,80 евро (а месячный платеж будет равен 2091,98 евро), то есть платежи по кредиту возрастут на 30,45 %. Впрочем, бывает и наоборот: когда базовая процентная ставка снижается, существенно уменьшается и сумма платежа.


Основы страхования. Как рассчитывается страховая премия

Страховые компании покрывают риски предприятий, семей и отдельных лиц, предлагая страхование от несчастных случаев, автомобильных аварий, болезней и смерти (страхование жизни), страхование жилья, медицинское страхование, страхование от различных стихийных бедствий (пожаров, наводнений), страхование гражданской ответственности и т. д. Для покрытия рисков страховые компании должны рассчитать сумму, которую вносит клиент, при этом деятельность компании с учетом всех необходимых расходов на покрытие возможного ущерба должна приносить прибыль учредителям.



Реклама американской страховой компании начала XX века, в которой перечислены все услуги, предлагаемые населению.


При расчетах страховых премий используются методы статистики (например, формирование выборок) и математики, как, например, актуарные расчеты, подбор аппроксимирующей кривой (линейная и нелинейная регрессия), теория вероятностей и матричное исчисление для таблиц смертности и данных о заболеваемости населения.

Применение этих методов невозможно без качественных баз данных за прошлые периоды: для прогнозирования необходимо располагать очень точной информацией о прошлых значениях переменных, которые влияют на расходы для покрытия ущерба от несчастного случая и должны учитываться при определении размеров страхового взноса, уплачиваемого клиентом.

Страховые компании при прогнозировании событий анализируют генеральные совокупности. Так как генеральные совокупности имеют значительные размеры, для формирования выборок используются статистические методы (выборки — малые части рассматриваемой совокупности, характеристики которых схожи с характеристиками всей совокупности). При формировании выборки необходимо рассчитать ее надежность и погрешность результатов. Существует множество различных методов формирования выборок, как случайных, так и стратифицированных, когда формируются отдельные репрезентативные выборки по каждому сегменту (сектору) генеральной совокупности, географическому региону и т. д.

Страховые компании ведут статистику общего числа несчастных случаев, ущерба от них, числа полисов и доходов от них и сравнивают затраты на покрытие ущерба с итоговым доходом от страховых премий. Наряду с этими основными переменными учитываются и другие, в частности возраст застрахованного или место его проживания. Они позволяют определить формулы, по которым можно спрогнозировать риски, вероятность страховых случаев и т. д. с помощью многовариационного анализа, кластерного анализа и критерия хи-квадрат.

В актуарных расчетах страховых премий при страховании жизни используются статистические таблицы (матрицы), в которых для каждой половозрастной группы на основе данных прошлых периодов определяется вероятность дожития до определенного возраста. Зная затраты на возмещение ущерба от несчастных случаев, можно определить размер страховых премий, при котором страховой бизнес будет прибыльным.


Описательная статистика

Статистика позволяет проводить количественный анализ различных ситуаций. Представление о них перестает быть чем-то, основанным лишь на интуиции, и обретает объективность. Разумеется, статистика может быть обманчивой, однако тщательно спланированное и проведенное статистическое исследование помогает понять, что происходит на самом деле, и принять обоснованные решения.

Статистику можно определить как математический анализ, позволяющий с максимальной точностью изучать события, информации о которых недостаточно, в том числе и экономические события. Тремя ключевыми понятиями статистики являются: признак — изучаемое свойство некоторого события или явления (чтобы изучить признак, необходимо проанализировать, как он изменяется); объект исследования (это могут быть люди, семьи, избиратели, товары, детали, автомобили и т. д.) и генеральная совокупность — совокупность всех объектов, на которой проводится статистическое исследование.

При изучении генеральной совокупности можно рассмотреть значения признаков для всех ее элементов, однако во многих случаях это нецелесообразно. Часто выбирается группа объектов совокупности — формируется выборка, после чего все элементы выборки тщательно анализируются. По сути, одной из основных задач статистики является правильное формирование выборок и определение способов их изучения, позволяющих делать выводы, справедливые для всей генеральной совокупности.

Изучаемые признаки могут быть качественными (например, степень удовлетворенности обслуживанием) или количественными, которые, в свою очередь, могут быть дискретными (то есть принимать только целые значения, например число детей в семье) или непрерывными (например, диаметр деталей, изготавливаемых на станке).

Данные, собранные при статистических исследованиях, отображаются на различных графиках: столбчатых диаграммах, гистограммах, круговых диаграммах и т. д.

Глава 4. Производство и затраты на него. Рентабельность инвестиций

Максимальный объем продукции, которую можно произвести при определенном количестве факторов производства, определяется производственной функцией: х = f(v1, v2, …, vn), где х — объем произведенной продукции, v1, v2, …, vn — факторы производства. Факторы производства зависят от уровня технологий и остаются неизменными, пока не произойдет смена технологий. При смене технологий изменяются значения используемых факторов либо они заменяются новыми, более эффективными факторами. Предполагается, что переменные, используемые в производственной функции (объемы и факторы производства), измеримы, а используемая технология и поведение факторов производства не меняются.


Предельные издержки и оптимизация прибыли предприятия

Оптимальный уровень производства

Производственную функцию, как и любую другую, можно выразить аналитически с помощью формулы, построив ее график или составив таблицу значений. В строках и столбцах таблицы значений будут записаны значения факторов производства, необходимые для получения определенного объема продукции. На графике изображаются значения, содержащиеся в этой таблице.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Том 19. Ипотека и уравнения. Математика в экономике"

Книги похожие на "Том 19. Ипотека и уравнения. Математика в экономике" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Луис Арталь

Луис Арталь - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Луис Арталь - Том 19. Ипотека и уравнения. Математика в экономике"

Отзывы читателей о книге "Том 19. Ипотека и уравнения. Математика в экономике", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.