» » » » Журнал «Открытия и гипотезы» - Открытия и гипотезы, 2015 №05


Авторские права

Журнал «Открытия и гипотезы» - Открытия и гипотезы, 2015 №05

Здесь можно скачать бесплатно " Журнал «Открытия и гипотезы» - Открытия и гипотезы, 2015 №05" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Интеллект Медиа, год 2015. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
 Журнал «Открытия и гипотезы» - Открытия и гипотезы, 2015 №05
Рейтинг:
Название:
Открытия и гипотезы, 2015 №05
Издательство:
Интеллект Медиа
Жанр:
Год:
2015
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Открытия и гипотезы, 2015 №05"

Описание и краткое содержание "Открытия и гипотезы, 2015 №05" читать бесплатно онлайн.



Научно-популярный журнал "Открытия и гипотезы" представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.






Прорыв в исследовании электрических рыб осуществил в середине XX века Ганс Вернер Лиссманн, родившийся в городе Николаеве (1909 г.) и с 1934 года работавший в Кембридже (рис. 2).



Рис. 2. Ганс Вернер Лиссманн (1909–1995), первооткрыватель электрорецепции, остался легендарным героем-одиночкой для узкого круга специалистов.


В 1951 году он опубликовал сообщение в «Nature» о том, что зарегистрировал электрические разряды от пресноводной рыбы гимнарха Gymnarchus niloticus. А в 1958 году, после семи лет плодотворных экспериментов и полевых исследований, в «Journal of experimental biology» вышла его главная статья — «О функции и эволюции электрических органов рыб». Лиссманн убедительно доказывал, что электрические органы рыбам нужны для ориентирования и общения.

Все началось с того, что Лиссманна, изучавшего динамику движений животных, заинтересовала способность гимнарха плавать хвостом вперед и при этом уверенно обходить препятствия. Предполагаемый электрический орган у гимнарха находился как раз в хвосте, и Лиссманну удалось установить, что этот хвост испускает импульсы стабильной частоты (порядка 300 Гц) и амплитуды (около 30 мВ в метре от рыбы). Кроме того, гимнарх явно реагировал на объекты из проводящих материалов. например на опущенную в аквариум медную проволоку. Лиссманн предположил, что гимнарх ориентируется с помощью электролокации — ощущает искажения силовых линий собственного поля.

Этот способ мировосприятия, по-видимому. не имеет аналогий не только с человеческими органами чувств, но и с человеческой техникой. Когда же стало понятно, что и как искать, слабоэлектрических рыб оказалось не так уж мало.

Совместно с Кеном Мэйчином, отвечавшим за инженерное обеспечение, Ганс Лиссманн провел серию интересных экспериментов. Например, гимнарху предъявляли два закрытых сосуда, непрозрачных в оптическом диапазоне, но «прозрачных» для тока. У рыбы вырабатывали рефлекс: выбирать червяка рядом с тем из двух сосудов. электропроводность содержимого которого была больше, чем у воды (рис. 3).



Рис. 3. Эксперименты Лиссманна с гимнархами показали, что эти рыбы могут различать сосуды по электропроводности содержимого.


При этом регистрировали и разряды, исходящие от гимнарха, и нюансы его поведения. Аналогичные опыты позволили установить диапазон электрочувствительности гимнарха и сравнить ее с чувствительностью других рыб. Например, представители отряда карповых реагируют на электрические токи в диапазоне от 8 до 110 мкА/см2. Пороговая плотность тока, которую распознает гимнарх, составила, по оценкам Мэйчина, 10-5 мкА/см2 — оцените разницу в порядке величин!

Высокую чувствительность обеспечивают совершенные устройства приема. В подводном царстве широко распространены ампулярные рецепторы, в виде ямки «ампулы». Подобные структуры найдены и на коже некоторых палеонтологических образцов, например латимерий. Ампулярные рецепторы — низкочастотные, они лучше всего воспринимают единицы или доли герц и встречаются у многих типов рыб, в том числе неэлектрических: осетров, акул, сомов.

У мормирид, помимо ампулярных, есть электрорецепторы особого рода — бугорковые. Они воспринимают специализированные разряды электрических органов, собственных и чужих. Сигналы от них поступают в мозг рыбы, в так называемые электросенсорные доли. Рыба «видит» всей кожей электрические поля, и это позволяет ей ориентироваться даже в темноте или в замутненной воде, а также общаться с сородичами. Ни один скептик не скажет, что это приспособление — не полезное!

Зачем рецепторы неэлектрическим рыбам? Ганс Лиссманн предположил, что в ходе эволюции первичной была не электрогенерация, а электрорецепция — возможность наблюдать изменения электрических полей стала предпосылкой для умения генерировать такие поля. Логично: животные, лишенные слуха, не подают звуковых сигналов, не различающие цветов — не демонстрируют друг другу ярко окрашенные крылья или хвосты. А вот молчаливые существа, наделенные слухом, известны. Тем же акулам электрочувствительность помогает находить добычу.

Вспомним, что мышца — тоже электрический орган, потенциалы мышечных волокон компенсируются не полностью. Для нас, неразвитых наземных млекопитающих, камбала, зарывшаяся в песок, абсолютно незаметна, но ее выдает пульсация жаберных мышц. Акула «видит» вспышки мышечной активности — по частоте они как раз попадают в оптимум ампулярных рецепторов — и атакует. Точно так же она атакует и искусственный генератор разрядов.

Если же спрятать камбалу за непрозрачный для тока экран, то акула ее проигнорирует.

Эти опыты проделал в начале 70-х годов американский ихтиолог голландского происхождения Адрианус Кальмейн. Есть еще и потенциалы дыхания — вода, которую рыба выбрасывает из жабр, отличается по ионному составу, а значит, любое существо, дышащее под водой, можно засечь с помощью электрорецепции. Полезнейшее «шестое чувство»! Недаром палеоихтиологи полагают, что в палеозое. 300–600 млн. лет назад, оно было у всех предков рыб (и не только рыб), а к настоящему времени некоторые группы его утратили.


Удар по электрическому глазу

Сейчас принято считать, что существует шесть групп электрических рыб. Помимо мормирид и гимнотид, это электрические скаты, ромботелые скаты Raja (те самые, которых упомянул Дарвин), звездочеты и сомы. Кстати, слабоэлектрической оказалась морская корова, единственный вид звездочетов, обитающий в Черном море.

Перечень слабоэлектрических сомов открыли сомы перистоусые, у которых обнаружили короткие разряды Мэри Хейчдорн (США) с соавторами В 1993 году удалось показать, что к слабоэлектрическим рыбам относятся клариевые сомы. То, что эти сомы способны воспринимать электрические поля, известно еще с XIX века. В 60-е годы XX века Лиссманн и Мейчин исследовали пороги их электрочувствительности, но они полагали, что сомы не могут сами генерировать разряды. Однако Лиссманн высказывал предположение, что слабоэлектрические виды могут быть обнаружены среди сомообразных, поскольку у сильноэлектрического сома, как и у ската с угрем, должны быть найдены слабоэлектрические родичи.

Зарегистрировать разряд от африканского клариевого сома удалось почти случайно. В отличие от слабоэлектрических скатов и звездочетов, сомы упорно отказывались производить разряды в ответ на тычки палкой. Оставалось надеяться: вдруг они сделают это по каким-то своим внутренним резонам, если подождать подольше? Чтобы увеличить вероятность счастливого события, в аквариум с электродами поместили сразу двух сомов, но оба «молчали*». Опыт решили прекратить, однако аппаратуру не выключили. И вдруг электроды начали регистрировать разряды — сомы пришли в себя после поимки и принялись выяснять отношения (рис. 4).



Рис. 4. Иллюстрация из статьи Барона, Орлова и Голубцова (1994): африканский клариевый сом C.gariepinus тоже производит разряды, но только при «общении» с себе подобными — например, при агрессии.


Что ж, если бы инопланетяне похитили человека и посадили в одиночную камеру, едва ли они в скором времени узнали бы, что разумные с планеты Земля генерируют акустические колебания частотой от десятков до тысяч герц. А вот если бы отловили сразу двоих, эта тайна раскрылась бы мгновенно.

Когда стало ясно, что тестировать рыб на электрогенерацию надо не по одной, а парами, это еще расширило их список: благодаря этой методике в него попали полиптерусы и силуриевые сомы. По представителям отряда Polypteriformes, или многоперообразных, есть пока всего одна публикация, но что существенно — это новая, седьмая группа электрических рыб.

Среди силуриевых, или настоящих сомов стоит упомянуть амурского сома, который водится на Дальнем Востоке России, в Китае, в Японии.

В целом можно сказать, что проблема «недостающего звена» в головоломке Дарвина снята. Но что с поведенческой значимостью? Для чего сомам электрический орган?

Как уже было сказано, в одиночестве клариевые сомы «молчат». Это говорит о том, что электрорецепция у них менее специализирована. Клариевые сомы генерируют разряды преимущественно при агрессивно-оборонительных отношениях.

Выяснилось, что сомы атакуют друг друга разрядами на близких дистанциях — агрессор подплывает почти вплотную. Амплитуда напряжений на теле жертвы — 2–5 мВ (максимум 12 мВ) при расстоянии между электродами 5 см. При этом чувствительность сомов к электрическим полям — почти 1 мкВ/см. «Электрический разряд, сопровождающий атаку, может выполнять функцию «удара по электрическому глазу», ослепляющему атакуемую рыбу и «подсвечивающую» ее для электрического восприятия атакующей». Все мы видели в кино, как один крутой парень направляет свет фонаря другому в лицо. Можно предположить, что для сома, воспринимающего электрический удар всем телом, такой поступок врага еще неприятнее, и неприятность тем больше, чем сильнее разряд. Видимо, это и определило ход эволюции электрических органов, направленный на повышение напряжения.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Открытия и гипотезы, 2015 №05"

Книги похожие на "Открытия и гипотезы, 2015 №05" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Журнал «Открытия и гипотезы»

Журнал «Открытия и гипотезы» - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " Журнал «Открытия и гипотезы» - Открытия и гипотезы, 2015 №05"

Отзывы читателей о книге "Открытия и гипотезы, 2015 №05", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.