» » » » Коллектив авторов - История электротехники


Авторские права

Коллектив авторов - История электротехники

Здесь можно купить и скачать " Коллектив авторов - История электротехники" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство Издательство МЭИ, год 1999. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
 Коллектив авторов - История электротехники
Рейтинг:
Название:
История электротехники
Издательство:
неизвестно
Год:
1999
ISBN:
5-7046-0421-8
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "История электротехники"

Описание и краткое содержание "История электротехники" читать бесплатно онлайн.



Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники.

Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники.

В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.






До 30-х годов РЭС низшего напряжения выполнялись при номинальных напряжениях 127 и 220/127 В. Следующей ступенью стало напряжение 6 кВ, при котором хорошие экономические показатели реализовались для электростанций мощностью до 50 МВт, при электроснабжении промышленности с наиболее крупными двигателями мощностью до 1 МВт, а также при передаче и распределении электроэнергии в городах и сельских районах. Последующее углубление электрификации промышленности, коммунально-бытового и сельского хозяйства обусловило необходимость замены напряжений 220/127 В на 380/220 В, напряжения 6 кВ на 10 кВ, а также применения в некоторых отраслях промышленности (при двигателях 150–800 кВт) напряжений 660/380 Вив отдельных случаях — 1150/660 В. В ряде РЭС (в первую очередь, городских и промышленных) пришлось осуществить перевод действующих электросетей напряжением 220/127 В на работу при напряжении 380/220 В и 6 кВ на работу при 10 кВ (В.А. Козлов, В.Д. Лордкипанидзе и др.) без замены основной части кабельных и воздушных линий при минимальной реконструкции распределительных устройств, но с соответствующей заменой трансформаторов.

Развитие РЭС связано с выполнением сетей по различным схемным принципам. Здесь различается применение трех основных типов схем:

1. Разомкнутые разветвленные сети без взаимного резервирования линий и подстанций. Такие схемы пригодны для электроснабжения потребителей, допускающих аварийные перерывы питания длительностью до 1 сут. Данный тип схем был характерен для начальных стадий развития РЭС, но применяется и в настоящее время для питания некрупных помещений и хозяйств в сельской местности и при малоэтажной застройке периферийных районов малых городов, допускающих указанные перерывы электроснабжения (И.А. Будзко, М.С. Левин, В.А. Козлов, В.В. Зорин и др.).

2. Петлевые (или кольцевые) сети с взаимным резервированием линий при однотрансформаторных подстанциях (6)10/0,38 кВ. Резервирование линий делает возможным сократить аварийные перерывы электроснабжения до 1–3 ч; при аварийных повреждениях трансформаторов (это наиболее редкие аварии в РЭС) электроснабжение части потребителей восстанавливается по резервирующим линиям низшего напряжения, а замена поврежденного трансформатора в большинстве случаев может быть осуществлена в течение одной рабочей смены. Этот тип схемы применяется достаточно давно и является наиболее распространенным в электроснабжении жилых районов городов России и ряда европейских стран, сельскохозяйственных производств и крупных населенных пунктов, а также на промышленных предприятиях, если технологические процессы цехов допускают кратковременные перерывы питания (И.С. Бессмертный, В.А. Козлов, Ю.Л. Мукосеев, В.Д. Лордкипанидзе и др.).

3. Разветвленные радиально-магистральные электросети с взаимным автоматизированным резервированием линий и трансформаторов подстанций. При этом типе схем применяются, как правило, кабельные двухцепные линии и двухтрансформаторные понижающие подстанции; при повреждении любого элемента сети напряжением 6–10 кВ потребители испытывают перерывы подачи напряжения только на время отключения повреждения и включения резервного электрооборудования (0,1–2 с); такие сети пригодны для питания наиболее ответственных потребителей (по условиям надежности электроснабжения). Их применение получило распространение в современных условиях при появлении значительной группы промышленных потребителей, многоэтажных жилых и общественных зданий в городах, а также сельскохозяйственных производств, не допускающих перерывов электроснабжения (Ю.Л. Мукосеев, Г.В. Сербиновский, Г.С. Короткое и др.).

С 1940–1950 гг. в системах электроснабжения крупных городов и промышленных предприятий применяются глубокие вводы высокого напряжения — питающие ЛЭП и подстанции напряжением 110 и 220 кВ, подающие мощность до 150 МВт непосредственно в центры зоны крупных нагрузок; аналогичное техническое решение при напряжениях 35 и 110 кВ применяется в сельскохозяйственных районах (Г.В. Сербиновский, В.А. Козлов, А.А. Глазунов, Ю.Л. Мукосеев, И.А. Будзко и др.).

По техническому назначению в структурах схем РЭС следует указать на два основных типа решения задачи передачи и распределения электроэнергии:

1. От источников питания (электростанция, понижающие подстанции 110 и 220 кВ) непосредственно отходят линии распределительных сетей, к которым присоединены потребители электроэнергии. При этом требуется достаточно большое количество присоединений распределительных линий на источниках питания, что увеличивает соответствующие распределительные устройства питающих узлов и обусловливает большую протяженность распределительных линий.

2. К источникам питания присоединяется ограниченное число крупных (по сечениям проводов и кабелей) питающих линий, которые

оканчиваются в распределительных пунктах напряжением 6 и 10 кВ или на распределительных щитах напряжением до 1000 В, к которым присоединяется необходимое количество распределительных линий. В распределительных пунктах и на щитах такого же назначения отсутствует трансформация напряжения и осуществляется только разделение потоков электроэнергии. Экономический смысл такого двухзвенного построения РЭС заключается в снижении количества коммутационного электрооборудования в распределительных устройствах источников питания, а также в уменьшении протяженности линий на участках между источником питания и районом концентрированного расположения потребителей. В РЭС напряжением 6 и 10 кВ длины питающих линий могут составлять 2–5 км, в электросетях напряжением 380/220 В — десятки метров.

В РЭС применяются как воздушные, так и кабельные линии. С начального периода развития РЭС и до настоящего времени в сельской местности применяются воздушные линии, что определяется их значительно меньшей стоимостью по сравнению с кабельными и прохождением трасс по малонаселенной местности. В современных условиях все шире в РЭС 380 В и 10 кВ, в том числе и в районах городов используются изолированные провода, получившие за рубежом массовое применение.

В городах и в промышленности РЭС выполняются кабелями, прокладываемыми в грунте или в специальных каналах, блоках и туннелях. В последнее десятилетие за рубежом прокладываются только относительно дешевые кабели с синтетической изоляцией, что повышает надежность электроснабжения. Такие кабели находят применение и в сельской местности. Здесь широко используется открытая установка трансформаторов (на повышенных фундаментах) и электрооборудования 6 (10) кВ в сочетании с закрытым шкафом распределительного щита 380/220 В. Для создания необходимой безопасности ТП окружается металлическим сетчатым ограждением.

На территориях городов большинства стран первоначальным типом ТП РЭС были отдельно-стоящие строения, внутри которых размещалось электрооборудование, включая трансформаторы. С архитектурно-градостроительных позиций в настоящее время такие решения подвергаются критической переоценке. Им на смену пришли малогабаритные ТП, изготовляемые с применением современной синтетической и элегазовой изоляции, что в 2–3 раза снижает габариты подстанций, а также ТП, встроенных в подземные или первые этажи жилых и общественных зданий. При этом применяются специальные конструктивные решения, обеспечивающие пожаробезопасность и поглощение шумов (Л.Ф. Плетнев, В.А. Козлов, В.Д. Лордкипанидзе и др.). В США и других развитых странах при электроснабжении центров крупных городов применяются погруженные в грунт герметические конструкции ТП с некрупными трансформаторами (25–50 кВ∙А); распределительный щит 380/220 В в таких случаях выносится в ближайшее здание. В промышленном электроснабжении ТП в виде отдельных зданий заменяются индустриально изготавливаемыми комплектными ТП, устанавливаемыми непосредственно в цехах предприятий (КТП) (Ю.Л. Мукосеев, А.А. Федоров и др.).

Отметим основные направления и создателей научно-методических основ прогрессивного развития РЭС в СССР и России. К ним, в первую очередь, относится создание методик расчетов РЭС на основе технических ограничений и требований, обеспечивающих надежное питание потребителей электроэнергии (А.А. Глазунов — 1925–1940 гг., В.Г. Холмский — 1940–1960 гг., Н.А. Мельников, Л.А. Жуков — 1950–1970 гг. и др.). С 30-х годов начинают развиваться методики оптимизации структур, схем, параметров линий и подстанций и режимов РЭС на основе усложняющихся технико-экономических критериев и с применением методов математической оптимизации. Здесь последовательно должны быть отмечены работы по общей теории формирования РЭС: В.М. Хрущева (Харьков), А.А. Глазунова (1935–1960 гг., Москва), В.Г. Холмского (1940–1960 гг., Киев) и др.; по промышленным РЭС: Г.М. Каялова (Новочеркасск), С.Д. Волобринского (Ленинград), А.А. Федорова (Москва), Л.М. Зельцбурга и Г.Я. Вагина (Горький) и др.; по городским РЭС: В.А. Козлова (Ленинград), В.В. Зорина (Киев), В.Д. Лордкипанидзе и А.А. Глазунова (Москва) и др.; по РЭС сельскохозяйственного назначения: И.А. Будзко, Л.М. Левина, Т.Б. Лещинской (Москва) и др.; по вопросам надежности электрических сетей: Ю.Б. Гука (Ленинград), Ю.А. Фокина (Москва) и др.; по оптимизации режимов и качеству напряжения: Л.А. Солдаткиной, Ю.С. Железко (Москва), И.В. Жежеленко (Мариуполь) и др.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "История электротехники"

Книги похожие на "История электротехники" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Коллектив авторов

Коллектив авторов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " Коллектив авторов - История электротехники"

Отзывы читателей о книге "История электротехники", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.