Джавад Тарджеманов - Серебряная подкова
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Серебряная подкова"
Описание и краткое содержание "Серебряная подкова" читать бесплатно онлайн.
Панкратов глубоко вздохнул и, подняв рукава своей куртки, будто перед жаркой схваткой, начертил на доске треугольник.
- Ишь какую теорему выбрал, - проворчал он добродушно. - Тут попотеешь. Придется вспомнить, что и месяц тому назад учили.
- Господин Панкратов, без лишних разговоров, - заметил Коля, подражая голосу Яковкина.
Таврило фыркнул, но тут же спохватился и глянул на свой чертеж.
- Пусть будет он треугольником ABC. И пусть одна его сторона ВС будет продолжена до буквы Д. Мы утверждаем, что внешний угол АСД больше каждого из внутренних углов ВАС и СВА. Разделим сторону АС пополам в точке Е.
- Постой, постой! Не торопись... А что ж это: внешний и внутренний углы треугольника?
- Неужели не знаешь? - удивился Панкратов.
- Уговор дороже денег, - напомнил Коля.
- Ну что ж... Угол, смежный с каким-нибудь углом треугольника, - начал объяснять Таврило, - называется внешним углом этого треугольника. Таков, например, угол АСД. Но, в отличие от внешних, углы самого треугольника называются внутренними. Все!
- Нет, - сказал Коля, - не все... Я пока не знаю, что ж это: "смежный угол"...
- А-а... - протянул Панкратов. - Сейчас вот узнаешь... Два угла называют смежными, если одна сторона у них общая, а две остальные составляют продолжение одна другой... Так?
- Верно... Продолжай дальше.
- А что продолжать?
- Но ты не объяснил еще главного: что же такое угол? Потом, неизвестно мне, что следует понимать под словом "сторона"...
- Фу-у! - рассердился Панкратов. - Ты меня совсем изводишь.
- Ничего, не лопнешь.
- Ладно, Математик, не шути... Сейчас я тебе разберу по всем пунктам. Начнем с угла. Итак, фигура, образованная двумя лучами, исходящими из одной точки, называется углом. А сторонами... Ты что улыбаешься? Думаешь, пропустил? Нет, шалишь, брат! Я потом... Так вот, полупрямые, образующие угол, называются его сторонами. Теперь-то можно дать определение луча. Прямая, ограниченная только с одной стороны, называется лучом или полупрямой, - закончил Таврило и торжествующе посмотрел на Колю. - Понял мою хитрость?
- Молодец, одним выстрелом убил двух зайчат, но вот сама зайчиха-то убежала!
- Зайчиха?.. - озадаченно переспросил Панкратов. - - Какая?
- А вот какая... Про угол ты говорил и использовал самое первоначальное евклидово понятие - точку. Почему не дал ее определения?
- "Почему, почему"!.. - проворчал Таврило с раздражением. - Прикажешь определять ее, точку эту, как нечто, не имеющее частей, или прямую линию как нечто прямое...
- Точка... Линия... Эх! - воскликнул Коля, махнув рукой. - Помню, об этом слышал еще в прошлом году на первом уроке у Корташевского. Как же я сам не смекнул?
Ведь правда, все наши предыдущие понятия в конце концов свелись к двум - точке и прямой линии. А если и другие геометрические понятия также основываются на них, то ясно, почему они...
- Что же ты! - прервал его Панкратов. - Не может быть! Ну... допустим, возьмем понятие о параллельных прямых. Это суть, как говорил Николай Мисаилович, две прямые, лежащие на одной плоскости и не имеющие общей точки. Но кроме прямой и точки оказалось еще одно понятие - плоскость. А можно ли определить ее с помощью точки и линии?..
- Н-да... - замялся Лобачевский, но тут же сообразил: - Так ведь плоскость есть такое же первоначальное, независимое от других понятие, как точка или прямая линия.
- Так и есть! - произнес Таврило. - Вот он и третий заколдованный круг: плоская поверхность есть нечто шки ское. А может быть, еще найдется много подобных первоначал?.. Проверим?
- Ну что ж, давай! - кивнул Коля и вдруг насмешливо запел тонким голосом:
Жил-был царь,
У царя был двор,
На дворе был кол,
На колу мочало...
Начинай сначала.
Чтобы ничего не пропустить нам, иди ты по "Началам", а я - по Осиповскому. С первых страниц разберем все геометрические понятия. Только с уговором: друг другу не мешать.
- Дальше в лес - больше дров, - вздохнул Панкратов. - Ладно уж...
Пристроившись к подоконнику, где посветлее, мальчики усердно зашелестели страницами.
Каждый читал по-своему: Лобачевский, с бумажкой и карандашом в руках, делая выписки, снова и снова возвращался к первым определениям и теоремам. У Панкратова была замечательная память, он удивлял способностью производить в уме довольно трудные математические вычисления и мог читать все подряд, не останавливаясь и лишь изредка перечитывая особо нужные места.
Вечерело. Последние отблески зари трепетали на стеклах окон. Сумерки сгущались быстро, и классная комната незаметно погружалась в темноту.
Панкратов, прервав чтение, поднялся.
- Может, хватит? - спросил он Колю. - Совсем темно стало, не то глаза испортим... А ты, пожалуй, прав.
Я добрался уже до параллелограмма, и, знаешь, ровнехонько все понятия, непосредственно или через другие, определяются только с помощью точки, прямой линии и плоскости... Да-да, их всего-навсего три. Значит, они действительно являются основными. - Таврило вдруг отступил на шаг и церемонно раскл-анялся: - Прошу прощения, госпожа Точка, госпожи Прямая и Плоскость, это я по своей тупости счел вас ненужными. Оказалось, ни одно геометрическое построение и рассуждение без вас не обходятся. Аи да дамы!
- Чему радуешься, простофиля? - упрекнул его Коля, швырнув книгу на подоконник. - Это ужасно! Какая же наука может быть ясной, когда в основе всех ее понятий лежат столь темные определения? Подумай только:
"Точка есть нечто, не имеющее частей". Не должно быть подобной темноты в геометрии! Мы, наверное, тут чего-то недопонимаем...
- У меня уже голова разламывается, - вздохнул Таврило. - Пойдем-ка на волю, проветрим головы - может, легче станет.
Однако ни прогулка во дворе, ни ужин в столовой не прояснили сомнений. Приятели снова заперлись в геометричке. Обсуждение - что же такое точка, линия и плоскость - объявили запрещенным.
- Временно, - добавил Коля. - Иначе нового доказательства теоремы найти нам не удастся.
Теперь каждый самостоятельно искал это новое доказательство. Но, увы, безуспешно. Всякий раз оказывалось, что удалось найти лишь обозначения и фигуры чуть-чуть не такие, как в учебнике. Все же остальное шло до учебнику. Чертили, стирали, спорили, пока все масло в коптилке не выгорело. Но доказательства нового, своего, так и не получилось
- Идем спать, может, во сне увидим, - сказал Панкратов.
Коля только махнул рукой.
На следующий день лучшие гимназисты собрались в геометрическом классе один мрачнее другого. Удивительный подъем, вызванный прошлым уроком, плодов не принес: никто не смог найти нового доказательства этой мучительницы - теоремы. Воспитанники с тяжелым унынием ждали своего учителя, беспокойно поглядывая на дверь. Но случилось неожиданное: Ибрагимов, появившись на пороге, предложил:
- Господа! Не хотите ли на волю - погреться на солнышке? Наше занятие сегодня проведем за Казанкой, в чистом поле. Там и познакомимся как следует с предком нашей геометрии - землемерием. Согласны?.. Одеться и приготовиться - даю вам на сборы пять минут!
Гимназистов будто подменили. Появились улыбки на их унылых лицах. Все вдруг засуетились и, толкая друг друга, направились к выходу.
Внизу по распоряжению Ибрагимова уже были приготовлены вехи, землемерная цепь, эккер и все необходимое для работы в поле. Мальчики живо разобрали все инструменты. Коля схватил землемерную цепь.
Сентябрьский день выдался на редкость теплый и почти безоблачный. На улице было многолюдно, весело. Ибрагимов шел с мальчиками, не требуя от них положенного строя. Поэтому все были такими радостными. Но уж самое чудесное, пожалуй, началось около Казанки.
Остановившись на берегу, Ибрагимов объявил:
- Здесь, господа, у нас будет переправа. Но предварительно предлагаю измерить ширину реки.
Двое учеников, схватив мерные шнуры, кинулись к лодке, лежавшей на берегу.
- Стойте, стойте! - закричал учитель. - Шнуры короткие, на ширину реки не хватит их. А главное - представьте себе, что нет у нас ни лодки, ни шнура. Тогда как быть?
Мальчики растерянно переглянулись.
- Тогда, может, на глаз определить? - нерешительно сказал Коля. - Тут, наверное, сажен двадцать, не больше.
- Глазомер у вас неплохой, - одобрил учитель. - Свойство для землемера весьма полезное. Сейчас проверим, насколько близки вы к истине. Для этого нужно... Панкратов, скажите нам: первый признак равенства треугольников.
- Если две стороны, - бойко начал Таврило, - и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны между собой.
- Прекрасно! - кивнул Ибрагимов. - Так вот, господа, измерим ширину реки по этой самой теореме, - Он посмотрел на Панкратова. - С помощью, например, козырька фуражки. Она ведь не то, что мерная цепь - всегда у человека на голове окажется.
Мальчики снова переглянулись.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Серебряная подкова"
Книги похожие на "Серебряная подкова" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джавад Тарджеманов - Серебряная подкова"
Отзывы читателей о книге "Серебряная подкова", комментарии и мнения людей о произведении.