» » » » Сборник статей - Чего не знает современная наука


Авторские права

Сборник статей - Чего не знает современная наука

Здесь можно купить и скачать " Сборник статей - Чего не знает современная наука" в формате fb2, epub, txt, doc, pdf. Жанр: Публицистика, издательство Литагент «Новый Акрополь»a1511911-a66d-11e1-aac2-5924aae99221, год 2015. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
 Сборник статей - Чего не знает современная наука
Рейтинг:
Название:
Чего не знает современная наука
Издательство:
неизвестно
Год:
2015
ISBN:
978-5-91896-102-5
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Чего не знает современная наука"

Описание и краткое содержание "Чего не знает современная наука" читать бесплатно онлайн.



Жизнь без тайны – пресна и скучна. Присутствие тайны – вызов для нас, а стремление проникнуть в нее – сильнейший стимул наших действий. Представьте себе, что мы знаем ВСЁ, – как же это неинтересно! Знание наперед всего, что должно произойти, напоминает чтение интересной книги с конца; тайна тем и интересна, что ее можно раскрывать. Нам повезло: мы живем в огромном мире, который до конца никогда не поймем… Авторы статей, собранных в этой книге, познакомят вас с теми тайнами, что с нетерпением сегодня ждут своих открывателей; а также из этих статей вы узнаете о древних, но, быть может весьма полезных методах познания мира, в котором мы живем.

Статьи эти на протяжении более чем 10 лет публиковались в журналах «Новый Акрополь» и «Человек без границ» и неизменно вызывали огромный читательский интерес. Авторы статей – ученые, преподаватели естественных наук и философы, имеющие большой практический опыт.






Эти и другие трудности привели А. Эйнштейна к необходимости пересмотра классических представлений о пространстве, времени и тяготении, в результате которого родилась общая теория относительности, а чуть позже (в 1917 году) – и первая модель Вселенной, основанная на новой релятивистской физике. Однако и в этой модели Вселенная мыслилась как неизменная во времени, и были даже приняты специальные меры, чтобы сохранить ее стационарность.

В 1922–1924 годах Александр Фридман, петербургский физик, получил первые нестационарные решения уравнений А. Эйнштейна. Эти решения показывали, что Вселенная может либо расширяться, либо сжиматься. Многие физики и сам А. Эйнштейн к этим решениям отнеслись как к математическому фокусу, лишенному физического смысла, – настолько укоренившимся был стереотип раз и навсегда созданной Вселенной. Однако открытие астрономом Э. Хабблом в 1928 году Красного смещения в спектрах далеких звезд подтвердило, что Вселенная расширяется. Анализ этого факта и других, появившихся позже, позволяет сейчас говорить о том, что около 13,7 млрд лет назад Вселенная действительно родилась из точки или, точнее, из колоссально малой области пространства. С этого момента, по представлениям современной науки, и начало свой бег время и родилось пространство. Эта теория в науке стала общепринятой и получила название теории Большого взрыва. Блестящим, хотя и косвенным подтверждением ее явилось открытие в 60-х годах XX века реликтового космического излучения. За это открытие его авторы были удостоены Нобелевской премии.

Дальнейшие исследования показали, что глобальные процессы изменения Вселенной на первых порах шли с колоссально большой скоростью, потом характерный темп этих процессов качественного изменения форм Вселенной замедлился – лишь ее видимые границы продолжают увеличиваться со скоростью света. В этом смысле творение Вселенной от полной непроявленности до появления светил (первых звезд) действительно произошло за относительно короткий срок (по сравнению со временем существования Вселенной) – в этом смысле можно говорить о том, что в какой-то степени реализуется гипотеза креационизма. В то же время мир действительно развивается путем усложнения от первозданной первоматерии (Хаоса), как это описано в эволюционистских сюжетах. К такого рода парадоксам, когда для описания явления привлекается два (и более) подхода, на первый взгляд противоречащих друг другу, привыкла современная наука: в XX в. Нильс Бор сформулировал принцип дополнительности, философская трактовка которого состоит в том, что сложное явление требует для своего описания нескольких языков, вскрывающих разные его грани.

Современные наблюдения позволяют утверждать, что процессы творения Вселенной отнюдь не закончились. Как в космических масштабах, так и в масштабах микрокосмоса (то есть в упорядоченных сложных системах – планета, человечество, этнос, биологический вид, организм и т. п.) идут процессы творения по сценариям, схожим с мифологическими. Тем самым мифы о сотворении дают универсальные модели рождения и развития как всего космоса в целом (Большой взрыв), так и его малых частей («маленькие Большие взрывы»). Наличие «маленьких Больших взрывов» делает несостоятельной и гипотезу тепловой смерти Вселенной. Можно образно сказать, что в мире действуют две силы: первая – активно творящая, имеющая взрывной характер, и вторая – ограничивающая, придающая формы результатам безудержного творения; гармоничное существование мира зависит от равновесия между этими силами. На символическом языке мифа эти силы олицетворяют боги: Дионис и Аполлон в Древней Греции, Вишну и Шива с одной стороны и Брахма с другой в Древней Индии и т. п.

Алексей Чуличков, д-р физ. – мат. наук, МГУ

Неслучайная случайность. Возникновение жизни на Земле

Космогонические факторы

Случайно ли возникла жизнь на Земле, или ее создал Творец? Издавна споря друг с другом по этому вопросу, натурфилософы и теологи почему-то не обращают внимания на то, что в любом случае для перехода неживой материи в живую необходим целый комплекс планетарных и даже космогонических условий. И на самом деле, мы наблюдаем поразительно целенаправленное влияние совершенно разных, не связанных между собой никакими причинно-следственными отношениями феноменов, «устремленных» на формирование живой материи, без которых никогда бы не возникла на Земле «животворящая» экологическая ниша.

Начнем с положения Солнца в Галактике. Радиус Млечного Пути 20 000 парсек, и в своем движении вокруг ядра наша Галактика разделяется на четыре спиральных рукава. Между рукавами Стрельца и Персея нет активного звездообразования, и именно в этой спокойной области шириной не более 800 парсек, вдали от вспышек сверхновых звезд и столкновений с другими звездными образованиями, находится наша Солнечная система.

Солнце движется по эллипсу, плоскость которого почти параллельна плоскости Галактики. Это исключительно важно, потому что даже малое наклонение орбиты Солнца к плоскости Галактики привело бы к нарушению стабильности облака Оорта, откуда на Землю обрушился бы уничтожающий все живое кометный град.

Наше Солнце – желтый карлик класса G2, в Галактике и за ее пределами не обнаружено ни одной звезды, основные физические характеристики которой полностью совпадали бы с параметрами Солнца и способствовали бы возникновению живой материи.

Солнечная система образовалась путем конденсации газопылевой туманности 5 миллиардов лет тому назад, при этом масса и химический состав центральной звезды оказались таковы, что обеспечили ее продолжительное и равномерное свечение в течение всего этого времени. Если масса любой новообразованной звезды меньше 1,4 массы Солнца, то в результате своей скоротечной эволюции она превращается в горячий и плотный белый карлик, остывающий в течение сотен миллионов лет. Наоборот, звезды с массой от 1,4 до 2,5 масс Солнца не могут перейти в устойчивое состояние белого карлика и, сбросив оболочку, катастрофически быстро сжимаются до нескольких километров в диаметре, разогреваясь при этом до сотен миллионов градусов, и потом, стремительно остывая, превращаются в «плотно упакованные» нейтронные звезды.

Важным для сохранения жизни и наиболее существенным свойством нашего светила является практически постоянное в течение четырех миллиардов лет излучение с колебанием энергии в пределах 1–2 %, что благотворно сказалось на эволюционных преобразованиях неживой материи на Земле. Казалось бы, в таких же условиях неизменности исходящего от Солнца светового потока находятся и другие планеты земной группы: Меркурий, Венера, Марс, – однако никакой белковой активности на них пока не обнаружено. Возможно, потому, что в отличие от них Земля отстоит от Солнца на расстоянии, которое обеспечивает поддержание освещенности мощностью 1370 джоулей на один квадратный метр ее поверхности. Энергетический поток, приходящий от Солнца на Землю, зависит в большой степени от расстояния до Солнца, и именно этот параметр земной орбиты создает самые благоприятные условия для зарождения и существования живых организмов!

По расчетам астронома Харта, если бы орбита Земли была ближе к Солнцу всего на 5 %, то первичная вода никогда бы не сконденсировалась в моря и океаны. Из-за парникового эффекта наружная оболочка Земли перегрелась бы и стала схожа с поверхностью Венеры. Если бы, наоборот, расстояние от Солнца до Земли было больше всего на 1 %, то за счет подавления парникового эффекта началось бы разгоняющееся оледенение планеты.

Постоянство падающего в течение года на Землю солнечного потока поддерживается еще одним параметром земной орбиты – ее эксцентриситетом, который равен 0,02 и обеспечивает почти круговое движение планеты вокруг Солнца. Всем известны сезонные изменения климата, чередующиеся для Северного и Южного полушарий и связанные с наклоном экваториальной плоскости Земли к плоскости ее орбиты. Если бы эксцентриситет последней был больше, то на существующие на Земле сезонные колебания температуры наложились бы контрастные перепады солнечной энергии, приводящие к переохлаждению, когда планета находится в точках апогея, и перегреву, когда она проходит точки перигелия. При таких гипотетических условиях поверхность Земли превратилась бы в ледяную пустыню, где не смогли бы развиться сложные органические структуры.

В 1996 году китайские геологи обнаружили на горе Янышань окаменелые остатки сине-зеленых водорослей, которые под воздействием солнечного света приобретали светлый оттенок и росли вертикально, а после захода солнца становились темнее и росли горизонтально. Ученые рассчитали ежедневный, месячный и годовой ритмы роста водорослей. Выяснилось, что 1,3 миллиарда лет назад год на Земле был равен примерно 567 суткам, длившимся около 15,5 часов. На основе этих данных можно сделать интересный вывод: за 1,3 миллиарда лет продолжительность года на Земле не изменилась. Действительно, древний год длился 567 x 15,5 = 8788 часов, и это с точностью до 0,5 % равно продолжительности современного года: 364,25 x 24 = 8742 часов. Такая стабильность благоприятно сказалась на развитии жизни на планете.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Чего не знает современная наука"

Книги похожие на "Чего не знает современная наука" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сборник статей

Сборник статей - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " Сборник статей - Чего не знает современная наука"

Отзывы читателей о книге "Чего не знает современная наука", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.