» » » Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна


Авторские права

Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна

Здесь можно скачать бесплатно "Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна" в формате fb2, epub, txt, doc, pdf. Жанр: Науки о космосе, издательство Издательство физико-математической литературы, год 2007. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Рейтинг:
Название:
Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Автор:
Издательство:
Издательство физико-математической литературы
Год:
2007
ISBN:
9875-94052-144-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Черные дыры и складки времени. Дерзкое наследие Эйнштейна"

Описание и краткое содержание "Черные дыры и складки времени. Дерзкое наследие Эйнштейна" читать бесплатно онлайн.



Предлагаемая монография является популярным изложением новейших достижений в области астрофизики и гравитации, которые тесно связаны с фундаментальными предсказаниями А. Эйнштейна. Читатель найдет в книге много интересного о вкладе ученых разных стран в эту область науки, а также в близких к ней областях.

Эта книга переведена с английского на французский, немецкий, японский, китайский, польский, греческий языки. Несколько глав ее были ранее переведены на русский и опубликованы в журнале «Природа».

Книга рассчитана на широкий круг читателей, включая школьников старших классов.






В этой стратегии поиска, однако, существовала, по крайней мере, одна проблема. В 1966 г. рентгеновские телескопы были еще чрезвычайно примитивны.



8.5. Предложенный Зельдовичем и Новиковым способ поиска черных дыр. Звездный ветер, дующий с поверхности звезды-спутника, захватывается гравитацией черной дыры. Потоки газов, из которых состоит звездный ветер, огибают черную дыру в противоположных направлениях и сталкиваются с образованием резкого ударного фронта, где нагреваются до температуры в миллионы градусов и испускают рентгеновское излучение. Оптические телескопы должны видеть звезду, обращающуюся вокруг тяжелого темного объекта. Рентгеновские телескопы должны увидеть от этого объекта рентгеновское излучение

Поиск

Для астронома недостаток рентгеновских лучей состоит в том, что они не могут проникать через земную атмосферу. (Для людей это достоинство, поскольку рентгеновские лучи вызывают рак и мутации.)

К счастью, физики-экспериментаторы с широким кругозором из Военно-морской исследовательской лаборатории США, под руководством Герберта Фридмана, с 1940 г. работали над тем, чтобы заложить основы космической рентгеновской астрономии. Фридман и его коллеги вскоре после второй мировой войны начали исследовать Солнце, запуская приборы на захваченных немецких ракетах V-2 (Фау-2). Фридман описал их первый запуск 28 июня 1946 г., когда на носу ракеты был установлен спектрограф для изучения ультрафиолетового излучения Солнца. (Поскольку ультрафиолетовые лучи, как и рентгеновские, не могут проникнуть через атмосферу Земли.) На короткое время взлетев над атмосферой и собрав данные, «ракета в соответствии с расчетом вернулась на Землю носом вниз, зарывшись в огромном кратере примерно в 80 футов в диаметре и 30 футов глубиной. Несколько недель, проведенных в раскопках, позволили обнаружить лишь маленькую кучку неидентифицируемых обломков; все обстояло так, будто при столкновении ракета испарилась».

Так неудачно начав, но благодаря изобретательности, настойчивости и напряженной работе Фридмана и других, ультрафиолетовая и рентгеновская астрономия, шаг за шагом, стала приносить свои плоды. К 1949 г. Фридман и его коллеги для изучения рентгеновского излучения Солнца запускали счетчики Гейгера на ракетах Фау-2. К концу 1950-х, Фридман с коллегами, устанавливая счетчики на ракетах теперь уже американского производства — Аэроби (Аэропчела), исследовали ультрафиолетовое излучение не только от Солнца, но и от звезд. Но рентгеновские лучи — дело другое. Каждую секунду Солнце обрушивает около 1 миллиона рентгеновских квантов на каждый квадратный сантиметр счетчиков Гейгера, и поэтому детектировать его рентгеновское излучение относительно несложно. Однако, как показывают теоретические оценки, самая яркая рентгеновская звезда будет в 1 миллиард раз слабее Солнца. Для того чтобы обнаружить такое слабое излучение, требовались детекторы в 10 миллионов раз чувствительнее тех, которые запускал Фридман в 1958 г. Такое усовершенствование, хотя и весьма существенное, все же не было невозможным.

К 1962 г. детекторы были улучшены в 10 000 раз. Осталось добиться тысячекратного выигрыша в чувствительности, и под впечатлением достижений группы Фридмана в соревнование включились другие исследователи. Одна из команд, руководимая Риккардо Джиаккони, станет грозным конкурентом.

Странным образом, успех Джиаккони мог бы разделить Зельдович. В 1961 г. Советский Союз неожиданно прервал взаимный советско-американский трехлетний мораторий на испытание ядерного оружия, испытав самую мощную бомбу, которую когда-либо взрывал человек, — бомбу, разработанную на Объекте группами Зельдовича и Сахарова (глава 6). Американцы в панике начали подготовку новых собственных испытаний. Они должны были стать первыми американскими ядерными испытаниями эры орбитальных космических полетов. Впервые открывалась возможность измерить из космоса рентгеновское и гамма излучение, а также частицы высокой энергии, образующиеся при ядерном взрыве. Такие измерения были необходимы для того, чтобы отслеживать дальнейшие советские испытания бомб. Однако чтобы провести такие измерения в ходе предстоящей американской серии испытаний, требовалась форсированная программа. Организация и руководство были поручены Джиаккони, двадцативосьмилетнему физику-экспериментатору из частной компании Американская наука и техника (Кембридж, штат Массачусетс), недавно начавшему разработку и запуск в космос детекторов рентгеновского излучения, подобных фридмановским.



Слева: Герберт Фридман, примерно в то время, когда его группой было открыто рентгеновское излучение Солнца. Справа: Риккардо Джиаккони, примерно тогда, когда его группа открыла первую рентгеновскую звезду. [Слева: предоставлено Военно-морской исследовательской лабораторией США; справа: предоставлено Р. Джиаккони]


Военно-воздушные силы Соединенных Штатов предоставили Джиаккони все требуемые средства, но мало времени. Менее чем за год он расширил свою группу рентгеновской астрономии, первоначально состоявшую из шести человек, введя в нее семьдесят новых участников, разработал, изготовил и испытал множество приборов слежения за взрывами военного назначения, запустив их в космос, достигнув 95-процентного успеха, на двадцати четырех ракетах и шести спутниках. Этот опыт сформировал из костяка его группы верную, знающую и высоко квалифицированную команду, идеально подходящую для того, чтобы обойти всех конкурентов в создании рентгеновской астрономии.

Временная команда Джиаккони сделала свои первые шаги в астрономии, начав с поиска рентгеновского излучения Луны, используя детектор, сделанный по образцу фридмановского, и как и Фридман, запустив его на ракете Аэроби. Их ракета, запущенная в Вайт-Сэндз, Нью-Мексико, за одну минуту до полуночи 18 июня 1962 г., быстро набрала высоту 230 километров, а затем упала назад на Землю. В течение 350 секунд она находилась за пределами земной атмосферы, на высоте достаточной, чтобы зарегистрировать рентгеновское излучение Луны. Данные, переданные на Землю телеметрией, были загадочны: рентгеновское излучение оказалось значительно сильнее, чем ожидалось. При более внимательном изучении данные показались еще удивительней. Казалось, что рентгеновское излучение шло не от Луны, а из созвездия Скорпиона (рис. 8.6б). Два месяца Джиаккони и члены его команды (Герберт Гурский, Франк Паолини и Бруно Росси) искали ошибку в данных и в аппаратуре. А когда таковой не нашлось, объявили о своем открытии. Впервые была обнаружена рентгеновская звезда, в 5000 раз более яркая, чем предсказывали астрофизики. Десятью месяцами позже группа Фридмана подтвердила открытие, и звезде было дано имя Sco Х-1 (1 — потому что самая яркая; X — потому что источник Х-лучей[88]; Sco — по латинскому названию созвездия Скорпиона — Scorpius).

Почему ошиблись теоретики? Как получилось, что они в 5000 раз недооценили силу космического рентгеновского излучения? Они неверно полагали, что на небе в рентгеновском диапазоне будут преобладать объекты, уже известные по оптическим наблюдениям — такие объекты, как Луна, планеты и обычные звезды, слабые источники рентгеновских лучей. Однако Sco Х-1 и другие вскоре открытые рентгеновские звезды не были подобны ранее наблюдавшимся объектам. Они являлись нейтронными звездами и черными дырами, захватывающими газ у нормальных звезд-спутников и нагревающими его до высоких температур, как это вскоре предположат Зельдович и Новиков (рис. 8.5 сверху). Для того чтобы показать, что такова в действительности природа наблюдаемых рентгеновских звезд, однако, потребовалось еще десятилетие работы рука об руку таких экспериментаторов, как Фридман и Джиаккони, и таких теоретиков, как Зельдович и Новиков.



8.6. Совершенствование технологии и разрешения рентгеновских астрономических инструментов в 1962—1978-х гг. (а) Схема конструкции счетчика Гейгера, использовавшегося группой Джиаккони в 1962 г. при открытии первой рентгеновской звезды, (б) Данные, полученные с помощью счетчика Гейгера, которые показывают, что звезда находится не там где Луна; обратите внимание на плохое угловое разрешение (большую погрешность измерений), составляющую 90 градусов, (в) Рентгеновский детектор на спутнике Ухуру, 1970 г.: значительно улучшенный рентгеновский счетчик находится внутри корпуса, а перед детектором расположены пластины в виде жалюзи, препятствующие регистрации рентгеновских лучей, летящих не перпендикулярно входному окну детектора, (г) Рентгеновское излучение Cygnus Х-1, кандидата в черные дыры, измеренное Ухуру. (д) Схема и (ё) фотография зеркал для фокусировки рентгеновских лучей в рентгеновском телескопе Эйнштейн, 1978 г. (ж) и (з) Фотографии двух кандидатов в черные дыры — Cygnus Х-1 и SS-433


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Черные дыры и складки времени. Дерзкое наследие Эйнштейна"

Книги похожие на "Черные дыры и складки времени. Дерзкое наследие Эйнштейна" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Кип Торн

Кип Торн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна"

Отзывы читателей о книге "Черные дыры и складки времени. Дерзкое наследие Эйнштейна", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.