» » » » Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума


Авторские права

Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума

Здесь можно скачать бесплатно "Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Микель Альберти - Мир математики. т.20. Творчество  в  математике. По каким правилам ведутся игры разума
Рейтинг:
Название:
Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0715-1
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума"

Описание и краткое содержание "Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума" читать бесплатно онлайн.



В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.






Это невозможно. Тем не менее, проведя некоторое время в чужой стране, мы привыкаем к экзотике. То, что раньше казалось странным, теперь привычно. И в этот момент мы можем заняться тем же, чем занимались дома. Когда этот первый этап пройден, но поездка еще не закончена, путешественник в свободные минуты может задуматься о чем-то привычном, свойственном его среде.

В эквадорском городе Баньос я впервые в жизни начал разговор о математике, находясь далеко от дома, — я разговорился с немецким туристом, который интересовался теоремами о собственных значениях.

Второй подобный разговор произошел несколько лет спустя, когда я взял с собой в Индонезию тетрадь с заметками и книгу по математике, чтобы подготовить курс лекций. Путешествие обещало быть долгим, и я планировал пробыть на одном месте несколько недель. Музыка и литература помогли мне воссоздать привычное рабочее место, очень похожее на то, что было у меня дома. Сначала это казалось мне странным, но постепенно я привык заниматься математикой в тропиках. Именно тогда мне пришла в голову описанная ниже задача об оптимизации: на мысль о ней меня навели острова Молуккского архипелага, разделенные проливом шириной всего два километра: Тернате, имеющий почти идеально круглую форму, и соседний с ним остров Тидоре.

Задача формулируется следующим образом. Даны два круглых острова, на каждом из них есть всего одна дорога, идущая вдоль побережья. Один человек находится в точке Р на дороге, проложенной на одном острове, и ему нужно попасть в точку Q на дороге, расположенной на другом острове, как показано на рисунке. Как найти кратчайшую траекторию?



Все возможные траектории, проходящие по островам, будут иметь форму дуг окружности. С одного острова можно попасть на другой, двигаясь вдоль прямой линии. Вспомним рекомендации Пойа и сведем задачу к простейшему случаю, затем будем рассматривать все более сложные случаи и в итоге найдем общее решение.

1. Оба острова представляют собой точки.

2. Один из островов представляет собой точку.

3. Острова имеют одинаковый радиус.

4. Острова имеют разный радиус.

Основную роль при решении задачи играют четыре точки, положение которых определяется общими касательными к обеим окружностям, как показано на иллюстрации.



При решении задачи возникает вопрос: путь между какими точками будет кратчайшим, если мы будем передвигаться исключительно морем? А что если один остров расположен внутри другого и они разделены озером, имеющим форму кольца?



Таблица умножения на песке

Моя третья встреча с математикой за пределами родной культуры произошла на пляже Падангбай на острове Бали. Там я встретил школьного учителя из небольшого городка, расположенного неподалеку, и его семилетнюю дочь. Учитель писал на песке примеры, а дочь должна была их решить. Меня удивил необычный способ умножения на пальцах, который они использовали. Я вспомнил одну из книг Джорджа Ифра, которая стояла в шкафу у меня дома, в 13 тысячах километров от того места, где я находился. В ней описывались различные способы умножения, используемые в разных частях света, но я не мог вспомнить, упоминалась ли в книге Индонезия и остров Бали.

Чтобы умножить, например, 6 на 8, девочка сжимала в кулак пальцы левой руки, а затем считала до 6 на пальцах, так, что в итоге один палец оказывался загнутым, 4 — разогнутыми. Затем она считала до 8 на пальцах правой руки так, что в итоге загнутыми оказывались 3 пальца, разогнутыми — 2, как показано на рисунке ниже.



Чтобы получить результат, девочка прибавляла число загнутых пальцев, умноженное на 10, то есть 10 * (1 + 3) = 40, к произведению чисел, которые обозначались разогнутыми пальцами, то есть 4·2 = 8. Результат умножения равнялся 40 + 8 = 48.

Кто придумал такой способ и как он работает? На первый вопрос ответить невозможно — способ очень древний. А ответ на второй вопрос выглядит так:

(10 — а) (10 — Ь) = 100 — 10а — 10Ь + аЬ =

= 100 —10(а Ь) + аЬ = 10[10 — (а + Ь)] + ab.

Здесь а + b — число разогнутых пальцев, 10 — (а Ь) — число загнутых пальцев. Число загнутых пальцев следует считать десятками, то есть умножить на 10. Наконец, а и b обозначают число загнутых пальцев на каждой руке. При умножении 6 x 7 мы получаем а = 4, b = 3. При умножении 8 x 8 загнутыми оказываются три пальца на каждой руке, они обозначают шесть десятков (60), два разогнутых пальца на каждой руке обозначают 2·2 = 4 единицы. Следовательно, результат умножения равен 60 + 4 = 64.

Смысл подобной системы в том, чтобы свести умножение двух чисел больше 5 к умножению чисел меньше 5. Чтобы использовать эту систему, не нужно знать таблицу умножения до 10 — достаточно таблицы умножения до 5.

Вернувшись домой, я открыл главу книги об истории чисел. Ифра писал, что схожие приемы умножения используются в разных частях света: «Подобные методы до сих пор встречаются в Индии, Иране, Сирии, Сербии, Бессарабии, Валахии, Оверни и на севере Африки». Индонезии среди упоминаемых им регионов не было. Так я впервые в жизни увидел что-то, что не было описано в книге. Жители Бали исповедуют индуизм, и нет никаких сомнений, что способ умножения, которым пользовались учитель и его дочь, был частью индийского культурного наследия.

* * *

УМНОЖЕНИЕ ЧИСЕЛ БОЛЬШЕ 10

Секрет описанного метода умножения основан на остатках от деления на 5. Такое умножение выполняется на пальцах. Так как у нас по 5 пальцев на каждой руке, число загнутых или разогнутых пальцев будет равно остатку отделения искомого числа на 5. Чтобы умножить 13 на 14, отсчитаем единицы на пальцах. В итоге на одной руке будут загнуты 3 пальца, на другой — 4, что соответствует остатку от деления 13 и 14 на 5:13 = 5·2 + 3; 14 = 5·2 + 4. Что нужно сделать дальше, чтобы найти результат умножения? Ответ на этот вопрос подскажет алгебра:

(10 + а)(10 + Ь) = 100 + (а + Ь)·10 + аЬ.

Иными словами, нужно прибавить к 100 столько десятков, сколько пальцев загнуто на обеих руках (3 + 4), и их произведение:

13·14 = 100 + (3 + 4)·10 + 3·4 = 100 + 70 + 12 = 182.

* * *

Гравюры тораджи: можно ли создать их, не зная математики?

Произошедшее заставило меня по-новому посмотреть на окружающее. Вскоре мне попалось на глаза нечто особенное: гравюры народа тораджи с индонезийского острова Сулавеси. Вначале я увидел в них лишь произведение искусства и часть культуры тораджи, отличительной чертой которой является традиционная архитектура. Дома и амбары для хранения риса сделаны из дерева и стоят на толстых сваях.

В нижней части строений обычно хранят инструменты и держат скот, наверху располагаются жилые комнаты со стенами из деревянных панелей. Крыша дома по форме напоминает седло.



Одинаковые геометрические фигуры, равноудаленные друг от друга, и круг, разделенный на шестнадцать равных частей.


На фасады домов наносятся различные узоры, расположение и значение которых отражают представления тораджи об окружающем мире, космосе и обществе. Авторов узоров вдохновляет окружающая природа, образы которой воплощаются в гравюрах в виде геометрических абстракций.

После увиденного на пляже Падангбай и после того, как я понял, что в книге Джорджа Ифра ничего не говорится об этом регионе, я внимательно изучил некоторые фотографии архитектуры тораджи. Я по-прежнему видел в них произведения искусства, полные символов, но начал замечать и тщательно выстроенную сеть параллельных и перпендикулярных прямых, окружностей, спиралей, переносов, отражений и других видов симметрии. Можно ли создать все эти узоры, не зная математики?



Геометрия неизменно присутствует в произведениях искусства и узорах народа тораджи с острова Сулавеси.


Как создаются гравюры тораджи

Изучив гравюры тораджи, европейский математик свяжет их с евклидовой геометрией и сделает вывод, что они с большой вероятностью созданы на основе понятий и методов, введенных Евклидом. Подобная трактовка будет неразрывно связана с самими геометрическими фигурами, увиденными на гравюрах. Термины, которыми математик описывает эти фигуры, являются частью его собственной математической культуры. Однако ни один из этих терминов не знаком мастерам, изготовившим гравюры.

Когда математики получили возможность посмотреть, как тораджи создают узоры, и пообщаться с мастерами, они поняли, что некоторые их методы не относятся к геометрии Евклида. Граверы создавали узоры с высокой точностью: чаще всего каждый узор наносился с помощью сетчатой ткани, в некоторых случаях — поверх заранее намеченных эскизов. И всегда тщательно проведенные линии служили основой для фигур, которые наносили на гравюру позже.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума"

Книги похожие на "Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Микель Альберти

Микель Альберти - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума"

Отзывы читателей о книге "Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.