» » » » Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума


Авторские права

Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума

Здесь можно скачать бесплатно "Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Микель Альберти - Мир математики. т.20. Творчество  в  математике. По каким правилам ведутся игры разума
Рейтинг:
Название:
Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0715-1
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума"

Описание и краткое содержание "Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума" читать бесплатно онлайн.



В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.






Все мы рассматриваем новые идеи через призму своего культурного опыта, и чтобы усвоить что-то новое, требуется взглянуть на уже известное под другим углом. Обучаясь, человек может обнаружить, что его рассуждения и рассуждения, приводимые в учебнике, вступают в конфликт друг с другом. Так происходит при изучении степеней, показатели которых являются отрицательными числами, десятичными дробями или иррациональными числами — их сложно понять в рамках классического подхода, где рассматриваются, например, операции умножения или деления.

Возвести число в степень означает умножить его на само себя столько раз, сколько указывает показатель степени:

34 = 3·3·3·3

При перемножении степеней их показатели складываются, при делении — вычитаются:

23·25  = (2·2·2)·(2·2·2·2·2) = 28.


Однако если мы разделим друг на друга степени с одинаковым показателем, например, 23 на 23, то получим удивительный результат. С одной стороны, он будет равен 1, так как 8/8 = 1. Но в соответствии с правилом показатели степеней должны вычитаться:


Это означает, что приведенный выше результат возможен только в том случае, если 20 = 1. Но почему число, умноженное само на себя ноль раз, равно 1? И это не все. Если при делении степеней показатель в знаменателе больше, чем в числителе, то мы получим степень с отрицательным показателем:


Изначально возведение числа в степень означало умножение этого числа на само себя несколько раз. Затем в математике появились операции и выражения, противоречащие этой точке зрения. Возвести число в отрицательную степень означает разделить единицу на число, умноженное само на себя столько раз, сколько указывает показатель степени. Логично ли это? Имеет ли это смысл? Да, это логично, но смысл этой операции нужно изменить. Нужно изменить понятие показателя степени как числа, означающего число сомножителей в произведении. Кроме того, степень с отрицательным показателем — то же самое, что степень с положительным показателем в знаменателе дроби. Таким образом:


Подобным же образом описываются степени с дробными показателями. Если квадратный корень числа возвести в квадрат, то результатом будет исходное число:

(√a)2 = a

Какой показатель степени будет соответствовать квадратному корню из а?


Почему бы теперь нам не определить смысл следующих выражений:

2π, 2√2

Их смысл определяется тем, что всякое иррациональное число (то есть число, которое нельзя представить в виде частного двух целых) является пределом последовательности рациональных чисел, как, например, квадратный корень из 2 и число π:

1; 1,4; 1,41; 1,411; 1,4142; 1,41421, … √2

3; 3,1; 3,14; 3,141; 3,1415; 3,14159, … π.

Так как мы знаем, что означает возведение числа в рациональную степень, мы можем определить степень с иррациональным показателем:

2√2 = предел {21; 21,4; 21,41; 21,414; 2,14142; …}.

Обратите внимание, насколько далеко мы отошли от исходного определения степени! Перед нами — удивительные результаты математического творчества: на основе элементарных операций мы создали новые операции и наделили их значением. Их смысл противоречит нашим прошлым знаниям, однако подчиняется логике, и эти новые операции образуют часть согласованной системы. Изначально показатель степени мог быть только натуральным числом. Однако теперь степень с натуральным показателем рассматривается всего лишь как частный случай более широкого понятия: показатель степени может быть отрицательным, дробным и даже иррациональным.

Чтобы принять результат творчества, необходимо сменить угол зрения. Теперь уже не следует рассматривать степень как умножение числа само на себя столько раз, сколько указывает показатель степени, так как нет никакого смысла умножать число само на себя —0,12 раза или 71 раз. Исходная точка зрения послужила своеобразным трамплином к новому, более широкому и общему понятию, частным случаем которого она является. Творчество изменило нас.


От площади прямоугольника к площади произвольной фигуры

Отрезок и треугольник — две базовые фигуры математики и всего человеческого знания в целом. Отрезок имеет единственную характеристику — длину. По сути, так как не существует никакого осязаемого объекта, который представлял бы собой отрезок, можно сказать, что отрезок «состоит» из длины. А вот треугольник, кроме длины (периметра), имеет еще и площадь — меру пространства, ограниченную тремя его сторонами.

Вычисление площадей с древнейших времен было одной из важных задач. В наиболее популярной легенде о происхождении математики говорится, что она зародилась в долине Нила, и причиной ее возникновения стала необходимость измерять площадь земли, затапливаемой во время разливов реки.

Для данного прямоугольника со сторонами а и b площадь S поверхности, ограниченной его сторонами, определяется как произведение его длины на ширину: S = а·Ь. Так как всякий треугольник является половиной некоторого прямоугольника, его площадь равна половине площади этого прямоугольника. Как можно видеть на следующем рисунке, площадь треугольника АВС равна половине площади прямоугольника APQC, основанием которого является сторона АС треугольника, а ширина равна высоте A, опущенной на основание АС:



Следовательно, площадь треугольника равна половине произведения его основания на высоту:

S = (1/2)·A·C·h

Любую плоскую фигуру можно разбить на несколько треугольников. Вычисление площади фигуры равносильно вычислению суммы площадей составляющих ее треугольников. Но как быть в случае, если фигура ограничена не прямолинейными, а криволинейными отрезками?

Простейшей криволинейной фигурой является круг. Задача о вычислении площади круга очень древняя, а задача о построении квадрата, площадь которого равна площади данного круга, с помощью циркуля и линейки — одна из трех классических задач геометрии.

Каково соотношение между площадью круга и площадью квадрата? В первом приближении площадь круга радиуса r можно оценить площадями вписанного и описанного квадрата:



Площадь круга Sс заключена между площадью квадрата с диагональю 2r и площадью квадрата со стороной 2r. Среднее значение этих двух площадей и будет первым приближенным значением площади круга S:


Сегодня нам известно, что этот результат не соответствует действительности, так как площадь круга равняется не 3r2, а πr2. Тем не менее в Древнем Египте соотношение между длиной окружности и ее диаметром принималось равным 3, хотя нетрудно видеть, что если окружность радиуса r совершит полный поворот, пройденная ею длина будет больше, чем ее утроенный диаметр. Однако сейчас нас интересует не поиск точного значения π, а переход от площади прямоугольника или треугольника к площади круга.

Можно построить вписанный и описанный равносторонний треугольник для данного круга, однако в этом случае задача только усложнится, а полученный результат будет не точнее предыдущего. Продолжив аналогичные рассуждения, придем к выводу, что если мы построим для данного круга вписанные и описанные многоугольники с большим числом сторон, то сможем вычислить его площадь с большей точностью. Результат будет тем точнее, чем больше сторон будет у этих многоугольников.

В пределе (если такая ситуация вообще возможна) мы получим два многоугольника с бесконечным числом сторон, площади которых будут равны площади круга.

Следовательно, достаточно рассматривать либо вписанные, либо описанные многоугольники, так как в пределе они совпадут.

Именно так рассуждал Архимед. Вместо того чтобы рассмотреть многоугольник с п сторонами, он начал с правильного шестиугольника и последовательно удваивал число его сторон. Он дошел до многоугольника с 96 сторонами и вычислил приближенное значение числа π и площади круга с очень хорошей точностью:


Но заслуга Архимеда состоит не в том, что он провел такие трудоемкие расчеты. Во-первых, он показал, что большую часть вычислений можно опустить, если на данном этапе известны периметры и площади вписанного и описанного многоугольника — периметры и площади соответствующих многоугольников на следующем этапе можно вычислить как среднее гармоническое и среднее геометрическое.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума"

Книги похожие на "Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Микель Альберти

Микель Альберти - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума"

Отзывы читателей о книге "Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.