» » » » Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы


Авторские права

Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Здесь можно скачать бесплатно "Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Хавьер Фресан - Том. 22. Сон  разума. Математическая логика и ее парадоксы
Рейтинг:
Название:
Том. 22. Сон разума. Математическая логика и ее парадоксы
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0717-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Том. 22. Сон разума. Математическая логика и ее парадоксы"

Описание и краткое содержание "Том. 22. Сон разума. Математическая логика и ее парадоксы" читать бесплатно онлайн.



На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.

Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.






Постепенно математическая нотация становилась все более символической: была введена форма, пригодная не только для записи рядов, производных и интегралов, — благодаря работам английского математика Джорджа Буля (1815–1864) стало возможным записывать в виде уравнений логические высказывания. Геометрия изучает фигуры в пространстве, арифметика — числа, математический анализ — средства, необходимые для формализации физических законов, алгебра — уравнения. Можно ли найти язык, общий для всех этих дисциплин, который сделал бы очевидным их единство?

* * *

БУЛЕВА АЛГЕБРА

Джордж Буль был первым, кто провел аналогию между логическими связками «и» и «или» и операциями умножения и сложения в алгебре. Он также ввел обозначения 0 («ложь») и 1 («истина») для двух значений логических переменных. Перед тем как рассмотреть пример, напомним, что при умножении чисел результат равняется нулю только тогда, когда одно из этих чисел равно нулю.

Допустим, что мы хотим перевести на язык алгебры высказывание «Все люди смертны».

Буль предложил обозначить через р значение истинности высказывания «быть человеком», за q — значение высказывания «быть смертным». Этот хитроумный прием позволяет свести содержание фразы к уравнению р·(1q) = 0.

Так, если некто является человеком, то р принимает значение истинности 1 («истина»).

Уравнение гласит, что произведение чисел р и (1 — q) равно нулю. Так как р отлично от нуля, то 1 — q должно равняться нулю. Однако это означает, что равно 1 («истина»), то есть что человек смертен.



Джордж Буль, один из прародителей вычислительной алгебры.

* * *

Размышляя о проблеме, которая изначально не имела ничего общего с этим скорее философским, нежели математическим вопросом, Георг Кантор в период с 1878 по 1884 год считал, что нашел ответ в теории множеств. На интуитивном уровне множество определяется как совокупность объектов: мы говорим о множестве животных, множестве парков Парижа или множестве читателей этой книги.

Эти совокупности можно определить, перечислив все входящие в них элементы либо указав нечто общее для этих элементов. Так, множество натуральных чисел (напомним, что натуральные числа — это числа, которые мы используем при счете) — это не что иное, как множество  = {0, 1, 2, 3 …}. Если бы мы хотели рассмотреть только четные числа, то записали бы 2 = {0, 2, 4, 6 …} или  n кратно 2}, где символ  обозначает «принадлежит», а вертикальная черта | — «такое, что». Мы указали не список элементов множества, а правило его определения, так как в этом случае мы рассматриваем подмножество натуральных чисел, обладающее свойством делимости на два.

Едва начав работу, Кантор осознал, что в его новой теории рассматривались одновременно два объекта совершенно разной природы: конечные и бесконечные множества. По сути задача о нахождении числа элементов множества (математики называют его кардинальным числом, или мощностью множества) имеет разные решения в зависимости от того, конечное или бесконечное множество мы рассматриваем. Представим очень простую ситуацию: допустим, мы хотим узнать, имеют ли два конечных множества одно и то же кардинальное число, например равно ли число букв в слове «нахальство» числу цветов радуги. Очевидный метод заключается в том, чтобы подсчитать элементы каждого множества и сравнить результаты: так как в слове Н-А-Х-А-Л-Ь-С-Т-В-О десять букв, а в радуге семь цветов (красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый), то эти два множества содержат разное число элементов. Но что произойдет, если мы применим этот же метод к двум бесконечным множествам? В этом случае необходимо либо считать, что все бесконечные множества обладают одинаковым кардинальным числом и поставить на этом точку, либо использовать какой-то другой метод.

Вернемся к конечным множествам и посмотрим, что произойдет, если мы будем не рассматривать две совокупности по отдельности, а станем по очереди извлекать из них по одному элементу: начнем с буквы Н и красного цвета и т. д., пока не дойдем до буквы С, которой соответствует фиолетовый цвет. В этот момент одно из двух множеств уже «закончилось», а в другом осталось еще три элемента — буквы Т, В и О, следовательно, кардинальное число этого множества больше. Операция, которую мы попытались проделать, в математике называется установлением биекции между двумя множествами и означает присвоение каждому элементу множества X элемента другого множества Y «один к одному» так, что выполняются следующие условия.

1. Не существует двух элементов X таких, которым соответствует один и тот же элемент Y.

2. Каждому элементу Y соответствует какой-либо элемент множества X.

Таким образом, используя введенную нами терминологию, можно сказать, что кардинальные числа двух множеств равны, если между ними можно установить биекцию. Нетрудно показать, что установить биекцию между двумя конечными множествами с разным числом элементов нельзя, так как либо несколько элементов X будут поставлены в соответствие одному и тому же элементу Y, либо какой-то элемент останется без пары.



Три примера отображения конечных множеств, лишь одно из которых (см. рис. 3) является биекцией, так как на рис. 1 двум элементам первого множества сопоставлен один элемент второго, а на рис. 2 один из элементов исходного множества остался без пары.


Преимущество этого подхода в том, что его можно применить к бесконечным множествам. Таким образом, будем говорить, что кардинальные числа двух множеств равны, если между множествами можно установить биекцию. Первое следствие этого, возможно, удивит читателя: существует столько же четных чисел, сколько четных и нечетных, вместе взятых. Как такое возможно? Для доказательства этого весьма неочевидного утверждения достаточно определить биекцию между натуральными и четными числами. Сопоставим 0 и 0, 1 и 2, 2 и 4, а произвольному п сопоставим число, в два раза большее него. При таком отображении различным числам всегда будут соответствовать разные числа, и любое четное число будет сопоставлено с числом, в два раза меньшим его. Так как оба свойства биекции выполняются, это означает, что существует столько же четных чисел, сколько и натуральных!

Переформулируем этот результат: «В отеле с бесконечным количеством комнат всегда найдется место для новых постояльцев, даже если все номера заняты». В самом деле, в гостиницах с конечным количеством номеров, где нет свободных мест, вам в лучшем случае подскажут, где находится ближайший отель. Но в гостиницах с бесконечным количеством номеров этого не происходит: так как в них столько же комнат, сколько комнат с четными номерами, можно использовать составленную нами биекцию и переселить постояльца из первого номера во второй, из второго — в четвертый и т. д., таким образом все комнаты с нечетными номерами окажутся свободными. И мы можем найти комнату для бесконечного числа путешественников. Возможно, владельцам отелей стоит взять это на заметку.

Существование подобных гостиниц, которые невозможно заполнить, — это не просто любопытный факт, связанный с четными числами, а основное свойство бесконечных множеств, как заметил Рихард Дедекинд в своей статье «Что такое числа и для чего они служат», опубликованной в 1888 году. Множество является бесконечным, если можно определить биекцию между ним и его частью. Очевидно, что с конечными множествами подобное невозможно, так как часть конечного множества не может быть поставлена в соответствие целому (как мы говорили выше, между двумя конечными множествами, число элементов которых равно m и n соответственно, можно установить биекцию только при m = n). Тем не менее натуральных чисел бесконечно много, так как часть этого множества, строго включенная в него, то есть множество четных чисел, имеет то же кардинальное число, что и все множество в целом. Следовательно, новое определение соответствует рассуждениям, основанным на аксиомах Пеано, с помощью которых мы в предыдущей главе доказали, что натуральных чисел бесконечно много. Однако множество натуральных чисел — это наименьшее бесконечное множество из всех, что можно представить.

Поэтому все множества, для которых можно установить биекцию со множеством натуральных чисел, называются счетными множествами, а их кардинальное число обозначается буквой алеф — первой буквой еврейского алфавита. Индекс указывает, что речь идет о наименьшем кардинальном числе: .


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Том. 22. Сон разума. Математическая логика и ее парадоксы"

Книги похожие на "Том. 22. Сон разума. Математическая логика и ее парадоксы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Хавьер Фресан

Хавьер Фресан - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы"

Отзывы читателей о книге "Том. 22. Сон разума. Математическая логика и ее парадоксы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.