» » » Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности


Авторские права

Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности

Здесь можно скачать бесплатно "Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности
Рейтинг:
Название:
Квант. Эйнштейн, Бор и великий спор о природе реальности
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Квант. Эйнштейн, Бор и великий спор о природе реальности"

Описание и краткое содержание "Квант. Эйнштейн, Бор и великий спор о природе реальности" читать бесплатно онлайн.



     Однажды, когда Чарли Чаплина и Альберта Эйнштейна окружила восторженная толпа, Чаплин заметил: “Меня приветствуют потому, что меня понимают все, а вас — потому, что не понимает никто”. С тех пор наука стала еще менее доступной пониманию публики. Английский журналист рассказывает о проблемах, занимавших физиков первой половины XX века, искусно соединяя описание человеческих черт “небожителей” — авторов квантовой теории — с рассказом о трудной, но веселой науке, которую они творили. Что получилось? Биография идеи, которая читается как триллер. Путеводитель по парадоксальному миру. Научно-популярная книга, которая сбивает с толку и дает почувствовать себя почти гением.






Как Шредингер ни старался, ничего поделать с таким расширением волнового пакета он не мог. Пакет состоит из волн с разными длинами и частотами. Перемещаясь в пространстве, он вскоре начинает неизбежно разбухать, поскольку составляющие его отдельные волны двигаются с разными скоростями. Чтобы волновой пакет вел себя наподобие частицы, волны должны практически мгновенно собираться вместе, быть локализованы в одной и той же точке пространства. К тому же использование волнового уравнения для гелия и других атомов приводило к тому, что представление о реальности, скрывавшееся за математическими выкладками Шредингера, исчезало. На его месте возникало абстрактное многомерное пространство, представить которое было невозможно.

В волновой функции электрона закодировано все, что надо знать об одной трехмерной волне. Однако волновую функцию двух электронов атома гелия нельзя трактовать как две трехмерные волны в обычном трехмерном пространстве. Математика показывает, что надо рассматривать одну волну, существующую в странном шестимерном пространстве. При переходе от одной клетки периодической таблицы к другой, от одного элемента к следующему число электронов возрастает на единицу. А это означает, что при каждом переходе возникает потребность в лишних трех измерениях. Если в случае лития, третьего элемента периодической таблицы, пространство должно иметь девять измерений, то уран надо снабдить пространством с 276 измерениями. Волны, распространяющиеся в таких абстрактных многомерных пространствах, не могут быть реальными физическими волнами, с помощью которых Шредингер надеялся восстановить непрерывность и избавиться от квантовых скачков.

Кроме того, интерпретация Шредингера не справлялась ни с фотоэлектрическим эффектом, ни с эффектом Комптона. Были и другие вопросы, на которые не было ответа. Как волновой пакет может обладать электрическим зарядом? Совместима ли волновая механика с квантовым спином? Если волновая функция Шредингера не является реальной волной в обычном трехмерном пространстве, то что эти волны вообще собой представляют? Ответ нашел Макс Борн.

Пятимесячное пребывание Борна в Америке подходило к концу, когда в марте 1926 года была опубликована первая статья Шредингера. Он прочитал ее по возвращении в Геттинген в апреле и, как и многие другие, почувствовал, что “захвачен врасплох”45. За время его отсутствия обстановка в квантовой физике радикально изменилась. Практически сразу Борн понял, что Шредингер построил “удивительно мощную и красивую” теорию46. Он быстро признал “превосходство математического аппарата волновой механики”, поскольку она позволяет сравнительно легко справиться с “фундаментальной задачей атомной физики” — вычислением спектра атома водорода47. Чтобы применить матричную теорию к атому водорода, потребовался человек такого таланта, как Паули. Может быть, Борн и оказался захвачен врасплох, но с волнами материи он был знаком уже давно — задолго до того, как Шредингер опубликовал свою работу.

“Вскоре после публикации диссертации де Бройля письмо Эйнштейна привлекло к ней мое внимание, но я был поглощен своими мыслями и не отнесся к ней достаточно внимательно”, — вспоминал Борн более чем через полвека48. В июле 1925 года Борн нашел время изучить работу де Бройля и написал Эйнштейну, что “волновая теория материи может оказаться очень важной”49. Он начал “понемногу размышлять о волнах де Бройля”50. Но тогда оставил эти размышления и занялся странным правилом умножения, появившимся в работе, которую принес ему Гейзенберг. Теперь, почти год спустя, Борну удалось преодолеть некоторые трудности, с которыми столкнулась волновая механика. Однако цена, которую ему пришлось заплатить, оказалась гораздо выше той, на которую соглашался Шредингер, принося в жертву частицы.

Отрицать частицы и квантовые прыжки, на чем настаивал Шредингер, было выше его сил. В Геттингене Борн часто становился свидетелем “плодотворности концепции частиц” при объяснении экспериментов, в которых изучаются атомные столкновения51. Борн оценил богатые возможности формализма Шредингера, но отрицал интерпретацию, предложенную австрийцем. “Необходимо, — писал Борн в конце 1926 года, — полностью отвергнуть физическую картину Шредингера, который хочет оживить теорию классического континуума. Надо оставить только его формализм и наполнить его новым физическим содержанием”52. Уверенный в том, “что частицы нельзя просто упразднить”, Борн нашел способ соединить вместе волны и частицы. Используя понятие вероятности, он предложил новую интерпретацию волновой функции53.

Во время своего пребывания в Америке Борн пытался понять, как с помощью матричной механики можно описать атомные столкновения. Вернувшись в Германию и неожиданно получив в свое распоряжение волновую механику Шредингера, он вновь обратился к этому вопросу и написал две основополагающие работы, носящие одно и то же название: “Квантовая механика процессов столкновений”. Первая — всего четыре страницы — была опубликована 10 июля в “Цайтшрифтфюр физик”. Вторую работу, более подробную и уточненную, он закончил и отправил через десять дней54. Шредингер не признавал существования частиц, а Борн, пытаясь их спасти, предложил интерпретацию волновой функции, ставившую под сомнение основное положение физики — детерминизм.

Вселенная Ньютона полностью детерминирована. Случайностям в ней нет места. Здесь частица в любой момент времени имеет определенный импульс и координату. Силы, действующие на частицу, определяют то, как со временем меняются ее импульс и координата. Но чтобы описать свойства газа, состоящего из огромного числа частиц, таким физикам, как Джеймс К. Максвелл и Людвиг Больцман, пришлось воспользоваться вероятностями и перейти к статистическому описанию. Вынужденное отступление в область статистического анализа они объясняли невероятными трудностями, возникающими в том случае, когда требуется проследить за движением всех частиц. В детерминированной Вселенной вероятность есть следствие недостаточной осведомленности о событиях, происходящих в строгом соответствии с законами природы. Если в настоящее время состояние системы и действующие на нее силы известны, то ее будущее предопределено. В классической физике детерминизм неразрывно связан с причинностью — утверждением, что каждое событие имеет свою причину.

Электрон, ударяющийся об атом, может отскочить почти в любом направлении, как и бильярдный шар, столкнувшийся с другим шаром. Но на этом, утверждал Борн, сходство кончается. Он предлагал нечто абсолютно невероятное: когда речь идет об атомных столкновениях, физика не может дать ответ на вопрос: “Каким будет состояние после столкновения?”, можно только спросить: “Какова вероятность данного результата столкновения?”55 “Здесь и встает вопрос о детерминизме”, — признается Борн56. Определить точно, где окажется электрон после столкновения, невозможно. Борн утверждал: единственное, на что способна физика — вычислить вероятность рассеяния электрона под заданным углом. Таков был предложенный Борном “новый смысл физики”, непосредственно связанный с его интерпретацией волновой функции.

Сама по себе волновая функция не является физической реальностью. Она существует в мистическом, призрачном мире возможного и имеет дело с абстрактными возможностями, такими как, например, возможные значения всех углов, на которые может рассеяться электрон после столкновения с атомом. Между понятиями “возможное” и “вероятное” лежит огромная пропасть. Борн утверждал, что квадрат модуля волновой функции, в отличие от нее самой, — это действительное число, принадлежащее миру вероятного. Например, зная квадрат модуля волновой функции, нельзя определить реальное положение электрона, а можно только оценить вероятность, шанс найти его в данном, а не в другом, месте57. Так, если значение волновой функции электрона в точке X в два раза больше, чем в точке Y, то вероятность обнаружить его в точке X в четыре раза больше, чем в точке Y. При этом электрон можно обнаружить и в точке X, и в точке Y, и где-нибудь еще.

Вскоре Нильс Бор пришел к выводу, что до тех пор, пока не выполнено наблюдение или измерение, микроскопический физический объект, такой как электрон, не существует вообще нигде. Между двумя измерениями он существует только в смысле абстрактных возможностей волновой функции. Только когда выполнено наблюдение или измерение, “коллапс волновой функции” приводит к тому, что одно из “возможных” состояний электрона становится “актуальным”, а вероятность реализации остальных возможных состояний обращается в нуль.

Согласно Борну, уравнение Шредингера описывает волну вероятности. Реальных электронных волн нет, есть только абстрактные волны вероятности. “Исходя из нашего понимания квантовой механики, не существует величины, которая в соответствии с принципом причинности определяет результат отдельного столкновения”, — пишет Борн58 и признается: “Я сам склонен отказаться от детерминизма в квантовом мире”59. И хотя, как указывал Борн, “движение частиц определяется вероятностными законами, распространение самой вероятности подчиняется принципу причинности”60.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Квант. Эйнштейн, Бор и великий спор о природе реальности"

Книги похожие на "Квант. Эйнштейн, Бор и великий спор о природе реальности" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Манжит Кумар

Манжит Кумар - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности"

Отзывы читателей о книге "Квант. Эйнштейн, Бор и великий спор о природе реальности", комментарии и мнения людей о произведении.

  1. Julia26.01.2020, 19:19
    Отзыв оставлю вконце,а пока восхитительно,таинственно, перелопатывающее не только мысли...
А что Вы думаете о книге? Оставьте Ваш отзыв.