» » » » Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики


Авторские права

Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики

Здесь можно скачать бесплатно "Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики
Рейтинг:
Название:
Том13. Абсолютная точность и другие иллюзии. Секреты статистики
Автор:
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0706-9
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Том13. Абсолютная точность и другие иллюзии. Секреты статистики"

Описание и краткое содержание "Том13. Абсолютная точность и другие иллюзии. Секреты статистики" читать бесплатно онлайн.



Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков. Читатель совершит экскурс в теорию вероятностей, а также узнает о статистических исследованиях, предвыборных опросах и о том, какие рассуждения лежат в основе всех статистических тестов.






Однако эта формула имеет один очень важный недостаток. Предположим, даны числа 3, 4, 6 и 15. Их среднее значение равно 7, а оценка общего числа элементов равна 13. Это очевидно неверно, так как выборка содержит число 15, следовательно, генеральная совокупность содержит минимум 15 элементов. Забавно, что результаты, полученные с помощью сложных методов, нередко противоречат элементарному здравому смыслу. Нужен иной способ. В действительности, чтобы определить общее число элементов совокупности в нашем примере, достаточно знать, сколько значений больше 35.



Достаточно разумный вариант — руководствуясь соображениями симметрии, предположить, что после последнего элемента находится столько же элементов, сколько перед первым. В нашем примере мы сложим 7 и 35 и получим примерное число элементов генеральной совокупности — 42. Этот метод неудобен тем, что мы не учитываем элементы, расположенные между элементами выборки. Между тем всегда следует использовать всю доступную информацию. Для этого мы добавим к последнему значению в выборке среднее расстояние между элементами выборки (первое расстояние будет равно числу элементов совокупности перед первым элементом выборки).



В нашем случае это среднее расстояние будет равно:

(7 + 5 + 7 + 4 + 7)/5 = 6

Следовательно, оценка общего числа элементов совокупности равна 41. Пусть х1, x2…, хn — значения, расположенные на 1, 2, n-м местах. В этом случае среднее расстояние, которое нужно прибавить, будет вычисляться по формуле:


Нетрудно видеть, что эта формула равносильна следующей:

(xn/n) — 1

Следовательно, более точную оценку общего числа элементов генеральной совокупности можно вычислить по формуле:


Насколько точна эта оценка? С помощью методов математической статистики можно доказать, что она является максимально точной из возможных. На языке специалистов такая оценка называется равномерно несмещенной оценкой с минимальной дисперсией.

Таким образом, нам достаточно записать номера лицензий 20 такси, прибавить к наибольшему из них его же значение, поделенное на 20, и вычесть 1. В нашем примере, если число лицензий равно 10481 и они пронумерованы последовательными числами, то в 95 % случаев оценка, выполненная по этой формуле, будет лежать в интервале от 9175 до 10990.

Очевидно, что этот метод подходит не только для подсчета числа такси в городах. Его также можно использовать, например, чтобы определить число участников массового забега, если всем им выданы последовательные номера. Службы разведки в прошлом посредством похожих методов оценивали вооружение врага. Мы знаем, что оружие имеет табельный номер, поэтому достаточно каким-то образом заполучить лишь несколько единиц, чтобы оценить общее количество оружия.


Какова доля домохозяйств, подключенных к Интернету?

Сначала нужно уточнить определения: что мы будем считать домохозяйством и подключением к Интернету. Нет смысла производить подробные расчеты, если нам неизвестно точное значение используемых понятий.

В одном газетном заголовке утверждалось, что половину сигарет выкуривают люди с психическими расстройствами. Это звучало так, будто половина курильщиков — ненормальные, что выглядит явным преувеличением. Однако в тексте заметки под психическим расстройством понималась зависимость от какого-либо вещества, поэтому не половину, а почти все сигареты выкуривают люди, страдающие от никотиновой зависимости, следовательно, имеющие «психическое расстройство». Многие слова, которые мы произносим в повседневной жизни, неоднозначны. Одно из таких слов — «семья». Что такое семья? Муж, жена и их дети? А если вместе с ними живут бабушка и дедушка, их следует считать членами семьи? Достаточно странно определять принадлежность человека к семье по тому, в каком доме он живет. Семью можно понимать и в более широком смысле, как, например, на свадьбах, где «семья невесты» и «семья жениха» насчитывают по несколько десятков гостей.

* * *

ОЦЕНКА ВЫИГРЫШНОЙ КОМБИНАЦИИ НАЦИОНАЛЬНОЙ ЛОТЕРЕИ

Нам прекрасно известно, что все числа национальной лотереи выпадают с одинаковой вероятностью. Но что можно сказать о среднем значении чисел выигрышной комбинации? 7 января 2010 года выигрышная комбинация испанской национальной лотереи состояла из следующих чисел: 19, 24, 25, 38, 43 и 49, их среднее значение равно 33. В субботу, 9 января, выпали числа 13, 26, 29, 30, 31 и 43; их округленное среднее значение равно 29. Все ли средние значения выпадают с одинаковой вероятностью или некоторые из них встречаются чаще, чем другие?

Определенные средние значения действительно встречаются чаще, поскольку, как мы объяснили в предыдущей главе, средние значения подчиняются закону нормального распределения. На следующей гистограмме представлено среднее значение чисел выигрышных комбинаций всех лотерей, начиная с 17 октября 1985 года и заканчивая 31 декабря 2009 года:



Средние значения чисел в выигрышных комбинациях.


Среднее значение будет с намного большей вероятностью лежать между 20 и 30, чем между 5 и 15. Почему бы нам не выбирать только те комбинации, в которых среднее значение чисел лежит в промежутке от 20 до 30? Ведь таких комбинаций намного больше, и вероятность того, что одна конкретная комбинация окажется выигрышной, всегда одинакова. Иными словами, если в розыгрыше участвует 1000 номеров, то какое число выпадет с большей вероятностью: лежащее в интервале от 500 до 550 или же число, лежащее вне этого интервала? Очевидно, что с большей вероятностью выпадет число вне этого интервала, но это не означает, что конкретное число внутри этого интервала выпадет с меньшей вероятностью, чем конкретное число вне этого интервала.

* * *

Равносильны ли понятия «дом» и «домохозяйство»? Очевидно, нет, так как если в доме никто не живет, он не является домохозяйством. Домохозяйством также нельзя считать дом, где кто-то живет только по выходным или в сезон отпусков. Является ли домохозяйством квартира, где живут студенты в течение учебного года? Связаны ли понятия «домохозяйство» и «семья»? Следовательно, необходимо четко сформулировать, что такое домохозяйство.

Определение подключения к Интернету представляет меньше трудностей, так как способ подключения, будь то ADSL-модем или оптический кабель, не имеет значения. Однако некоторые домохозяйства используют незащищенное беспроводное соединение соседей или бесплатное подключение из соседней библиотеки или кафе. Следует ли считать, что эти домохозяйства подключены к Интернету, или же нужно учитывать только тех, кто платит за подключение?


ДОМОХОЗЯЙСТВО, социально-экон. ячейка, объединяющая людей отношениями, возникающими при организации их совместного быта: ведении общего домашнего хозяйства, совместном проживании и т. д. В отличие от семьи, отношения родства или свойства между членами одного Д. необязательны: оно может включать жильцов, пансионеров, прислугу и других, а также состоять из одного человека, живущего самостоятельно.

Словарное определение понятия «домохозяйство».

Будем считать домохозяйством дом или квартиру, где большую часть года проживает один или несколько человек, связанных родственными отношениями. Будем предполагать, что домохозяйство подключено к Интернету, если подключение находится под его контролем и может быть отключено или подключено в любой момент.

Если мы возьмем выборку в 1000 из 100000 домохозяйств и в нашей выборке 51,9 % домохозяйств будут подключены к Интернету, значит ли это, что точно таким же будет процент для всей генеральной совокупности? Очевидно, что это необязательно так. Если мы сформируем другую выборку, также случайным образом, то результат, вероятно, будет отличаться, например он может быть равен 50,7 или 52,3 %.

По этой причине в представление результатов подобных исследований входит не только примерное значение, но и предельная ошибка. Например, результат оценки может быть равен (51,9 ± 2,3) %. Эти 2,3 %, которые мы прибавляем и вычитаем, и называются предельной ошибкой средней величины. Это означает, что мы получили конкретное значение, но не можем быть до конца уверены, что доля генеральной совокупности точно равна этому числу. Теория вероятностей позволяет определить точность, с которой произведена оценка, и вычислить предельную ошибку средней величины (исходные значения подчиняются закону биномиального распределения: мы анализируем конкретное домохозяйство и можем получить один из двух результатов — домохозяйство подключено к Интернету либо нет).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Том13. Абсолютная точность и другие иллюзии. Секреты статистики"

Книги похожие на "Том13. Абсолютная точность и другие иллюзии. Секреты статистики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Пере Грима

Пере Грима - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики"

Отзывы читателей о книге "Том13. Абсолютная точность и другие иллюзии. Секреты статистики", комментарии и мнения людей о произведении.

  1. Natalia Rodionova19.08.2021, 13:48
    Спасибо за перевод.

    Однако, пропускать в подобной книге ВСЕ формулы, иллюстрации и диаграммы - смерти подобно.
    Поэтому данное онлайн издание не имеет НИКАКОЙ познавательной ценности.

    Также имеется много ошибок по причине сбоя регистра и других типографских опечаток. Для цифровых данных подобное фатально.

    Резюмируя - печально. Русская версия книги безнадежно испорчена возмутительной неопрятностью переводчика, редактора и верстальщика.
А что Вы думаете о книге? Оставьте Ваш отзыв.