» » » » Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики


Авторские права

Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики

Здесь можно скачать бесплатно "Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики
Рейтинг:
Название:
Том13. Абсолютная точность и другие иллюзии. Секреты статистики
Автор:
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0706-9
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Том13. Абсолютная точность и другие иллюзии. Секреты статистики"

Описание и краткое содержание "Том13. Абсолютная точность и другие иллюзии. Секреты статистики" читать бесплатно онлайн.



Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков. Читатель совершит экскурс в теорию вероятностей, а также узнает о статистических исследованиях, предвыборных опросах и о том, какие рассуждения лежат в основе всех статистических тестов.






В нашем случае, если дегустатор чая правильно указывает 4 чашки из 4, мы можем отвергнуть нулевую гипотезу с р-значением, равным 1,4 %. В задаче о взаимосвязи двух переменных р-значение равно 2 %: если бы переменные не были бы взаимосвязаны (нулевая гипотеза верна), то вероятность того, что коэффициент корреляции был бы равен или больше полученного нами, равнялась бы 2 %.


Что, если нулевую гипотезу нельзя опровергнуть?

Если р-значение велико, то нельзя сказать, что результат противоречит нулевой гипотезе. Однако это совершенно не означает, что мы доказали истинность этой гипотезы. Именно поэтому говорят о том, что нулевая гипотеза отвергается (либо нет), а не принимается, и тем более не говорят о доказательстве истинности нулевой гипотезы.

Обычно проводят такую аналогию: как известно, нулевая гипотеза суда заключается в том, что обвиняемый невиновен. Иными словами, он считается невиновным, если не найдено доказательств его вины. Собранные улики являются доказательствами, которые подтверждают или опровергают нулевую гипотезу. Если на одежде обвиняемого были найдены пятна крови жертвы, это очевидно свидетельствует не в пользу гипотезы о его невиновности. Однако если пятен нет, то это может означать, что преступление было тщательно спланировано или же полиция действовала неудачно, следовательно, обвиняемого нельзя осудить (то есть отвергнуть нулевую гипотезу нельзя). Но это не доказывает, что подсудимый невиновен.

* * *

НЕОБЫЧНЫЙ СЛУЧАЙ: РАСПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ ДЛЯ ТРЕХ ТОЧЕК

Рональд Фишер первым получил общую формулу распределения для коэффициента корреляции. Он использовал столь нетривиальные математические методы, что Карл Пирсон, еще один ведущий статистик и редактор важнейшего научного журнала своего времени, по-видимому, не понял доказательства Фишера и препятствовал его публикации. Это, разумеется, не понравилось Фишеру. Инцидент положил начало вражде между двумя несомненно величайшими статистиками своего времени. Собственно, это совершенно не удивительно.

Следствия формулы Фишера достаточно необычны. Если даны три точки, соответствующие значениям независимых переменных, то диаграмма распределения возможных значений коэффициента корреляции имеет необычную форму, прямо противоположную привычному колоколу Гаусса. Наиболее вероятные значения располагаются не в середине интервала, а на его концах.



Теоретическое распределение коэффициента корреляции между независимыми переменными для трех точек в соответствии с формулой, выведенной Фишером (слева), и результат моделирования, выполненного 10 000 раз (справа).


Если даны четыре точки, то все значения коэффициента корреляции равновероятны. Если дано пять точек, то наиболее вероятным значением является ноль. По мере роста числа точек начинает вырисовываться традиционный график в форме колокола.

* * *

Еще один пример: сбалансированы ли игральные кости?

В главе 2 упоминается, что в 1850 году швейцарский астроном бросил пару игральных костей (красного и белого цвета) 20000 раз. Полученные результаты были достаточно далеки от ожидаемых теоретических значений. Это дает основания подозревать, что в эксперименте, возможно, использовались несбалансированные игральные кости. Так как все шесть возможных результатов являются равновероятными, если мы бросим игральные кости 20 000 раз, то теоретически каждое значение выпадет 20000/6 = 3333 раза. В следующей таблице представлены результаты эксперимента, теоретические значения и абсолютная величина отклонения от теоретических значений.



Являются ли эти отклонения достаточно большими, чтобы говорить о несбалансированности игральных костей? Или же эти отклонения могут возникнуть случайным образом? В конце концов, если бы результаты эксперимента в точности совпадали бы с теоретическими значениями, это тоже выглядело бы странно. Чтобы развеять сомнения, проверим статистическую гипотезу по той же схеме, что использовал Фишер для решения задачи о дегустаторе чая. Будем предполагать, что игральные кости сбалансированы, и отвергнем эту гипотезу только в том случае, если полученные данные будут явно ей противоречить.

Будем анализировать максимальное отклонение между полученными и теоретическими значениями. В предыдущей таблице показано, что для красного кубика эта величина равна 417, для белого — 599. Зададимся вопросом: каковы ожидаемые значения этой величины для идеально сбалансированных игральных костей? И снова на этот вопрос можно ответить с помощью моделирования.

Смоделируем 20000 бросков игральной кости, подсчитаем, сколько раз выпадет каждое значение, и рассчитаем максимальное отклонение от теоретического значения. При первом моделировании максимальное отклонение равнялось 83, при втором — 97. После того как моделирование было выполнено 10000 раз, была получена гистограмма, представленная на следующем рисунке. На ней также указаны значения, соответствующие красному и белому игральному кубику.



Распределение максимального отклонения для сбалансированных игральных костей и значения, полученные экспериментально.


Очевидно, что данные эксперимента противоречат гипотезе о сбалансированности игральных костей. Если бы эта гипотеза была верна, то вероятность получить подобные данные была бы очень, очень мала. В этом случае р-значение равно нулю с точностью до нескольких знаков после запятой. Следовательно, мы можем утверждать, что игральные кости несбалансированны, а вероятность того, что мы ошибаемся, практически равна нулю.

В качестве показателя, обобщающего данные эксперимента, можно использовать не максимальное отклонение, а величину, в которой учитывается отклонение для всех шести возможных результатов броска игральной кости.

Такой величиной может быть сумма всех отклонений, равных разности фактической и теоретической частоты, возведенных в квадрат (чтобы положительные и отрицательные отклонения не скомпенсировали друг друга), разделенная на теоретическую частоту.

Для красной игральной кости эта величина будет равна


Расчеты могут показаться вам излишне сложными, но эта величина обладает определенным преимуществом: она не требует моделирования распределения для случая, когда нулевая гипотеза верна (так называемого эталонного распределения). Эта величина называется критерий х2 (хи-квадрат). Ее впервые использовал в 1900 году Карл Пирсон, сыгравший важную роль в истории статистики. Мы уже упоминали его имя, когда говорили о коэффициенте корреляции.

Для обычных статистических тестов нет необходимости в моделировании распределения величины. Вместо этого оно выводится с помощью математических методов. Формула для расчета распределения коэффициента корреляции достаточно сложна и не имеет своего названия, хотя при большом размере выборки это распределение близко к нормальному. Первым, кто вывел формулу для этого распределения, был не кто иной, как Рональд Эйлмер Фишер.

* * *

СЛИШКОМ МАЛОЕ ОТКЛОНЕНИЕ ТОЖЕ ПОДОЗРИТЕЛЬНО

Если мы бросим идеально сбалансированную игральную кость 20000 раз, то каждое из возможных значений выпадет примерно 20 000/6 = 3333 раза. Отклонение фактической и теоретической частоты редко превышает 250. Это происходит всего один раз на каждые 100000 симуляций.

Однако также весьма необычно, если фактические значения очень близки к теоретическим. Допустим, игральная кость была брошена 20000 раз и были получены следующие результаты:



Есть основания подозревать, что эта информация недостоверна, так как столь малое отклонение фактической и теоретической частоты встречается всего один раз на миллион.

Фишер обнаружил любопытное совпадение между экспериментальными данными, опубликованными Менделем в его знаменитых работах о наследственности, и ожидаемыми теоретическими значениями. Удивительнее всего то, что Мендель ошибочно спрогнозировал результаты некоторых экспериментов, но полученные данные тем не менее были подозрительно близки к прогнозным значениям. По мнению Фишера, данные скорректировал необязательно сам Мендель, а кто-то из его ассистентов, который недобросовестно отнесся к работе и решил подменить реальные данные именно теми, которые ожидал увидеть Мендель.

Этот вопрос спровоцировал бурное обсуждение. Эта задача относится не только к теории вероятности, но также к генетике и ботанике, так как в ней идет речь о фундаментальном механизме наследования признаков у растений. Споры не утихали длительное время, но какой-то определенный итог этих дискуссий подвести трудно. Стороны сходятся на том, что нет четких доказательств того, что Мендель или кто-то еще скорректировал результаты эксперимента.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Том13. Абсолютная точность и другие иллюзии. Секреты статистики"

Книги похожие на "Том13. Абсолютная точность и другие иллюзии. Секреты статистики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Пере Грима

Пере Грима - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики"

Отзывы читателей о книге "Том13. Абсолютная точность и другие иллюзии. Секреты статистики", комментарии и мнения людей о произведении.

  1. Natalia Rodionova19.08.2021, 13:48
    Спасибо за перевод.

    Однако, пропускать в подобной книге ВСЕ формулы, иллюстрации и диаграммы - смерти подобно.
    Поэтому данное онлайн издание не имеет НИКАКОЙ познавательной ценности.

    Также имеется много ошибок по причине сбоя регистра и других типографских опечаток. Для цифровых данных подобное фатально.

    Резюмируя - печально. Русская версия книги безнадежно испорчена возмутительной неопрятностью переводчика, редактора и верстальщика.
А что Вы думаете о книге? Оставьте Ваш отзыв.