» » » » Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.


Авторские права

Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Здесь можно скачать бесплатно "Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.
Рейтинг:
Название:
Том 28. Математика жизни. Численные модели в биологии и экологии.
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0723-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Том 28. Математика жизни. Численные модели в биологии и экологии."

Описание и краткое содержание "Том 28. Математика жизни. Численные модели в биологии и экологии." читать бесплатно онлайн.



Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.






соответствует векторной величине на плоскости. Начало этого вектора находится в точке (0, 0), конец — в точке (2, 7). Следующий вектор расположен в пространстве (очевидно трехмерном):


Начало этого вектора находится в точке (0, 0, 0), конец — в точке с координатами (3,1,3).

Чему равно значение величины, изображаемой этим вектором? Если обозначить рассматриваемый вектор через u->, достаточно будет вычислить:


В математике модуль вектора обозначается |u|. К примеру, модули двух описанных выше векторов равны:


* * *

ВЕКТОРНОЕ ПРОСТРАНСТВО

В результате изучения матриц и систем линейных уравнений в XVII веке было определено понятие векторного пространства. Не будем останавливаться на нем подробнее, отметим лишь, что с точки зрения математики возможность сложения векторов (то есть выполнения операции u->+ v->) и умножения произвольного числа k на вектор u-> (k·u->) вкупе с соблюдением некоторых свойств позволяет определить векторное пространство как множество векторов, обладающее определенными характеристиками. Векторное пространство является одним из основных понятий в математической биологии. Оно используется в изучении филогенеза, при классификации цепочек ДНК, в экологических моделях, при исследовании метаболизма или восприятия цветов, а также в других областях.

* * *

Если возникает необходимость определить вектор-строку, достаточно применить операцию транспонирования:

(u1 u2um).

Далее вы узнаете, как векторы используются в изучении локомоции (перемещения животных) и при анализе нейронных сетей.


Сложение векторов: сокращение мышц и локомоция

Один из самых интересных способов применения векторов — изучение локомоции животных. Кузнечики прыгают, люди могут поднимать тяжести руками, рыбы плавают, птицы летают. Понять механику этих движений помогают операции с векторами.

Если мы рассмотрим движение руки человека, один вектор можно будет сопоставить бицепсу (этот вектор будет обозначать силу сокращения мышц), второй вектор будет обозначать противодействующую силу, третий вектор — указывать вес объекта, который поднимает рука.

Сложение векторов также помогает понять функцию некоторых мускулов. Один из методов сложения векторов — это известное правило параллелограмма. Заключается оно в том, что нужно привести два вектора, сумму которых мы хотим найти, к общему началу. Затем на этих двух векторах нужно построить параллелограмм.

К примеру, если рассмотреть ногу человека и обозначить боковую часть четырехглавой мышцы бедра вектором FL->, а среднюю часть этой мышцы — вектором FM->, сумму этих векторов можно найти по правилу параллелограмма. Иными словами, сумма векторов FL->FM-> будет обозначать суммарную силу четырехглавой мышцы F->.



Сумма векторов, соответствующих мышцам ноги, найденная по правилу параллелограмма.


Другой классический пример — сила F->, с которой сокращаются мышцы-сгибатели предплечья. Если представить эту силу в виде вектора, то она будет равна сумме двух других векторов, соответствующих другим мышцам. Один из этих векторов, FU->, перпендикулярен предплечью, второй вектор, FИ->, параллелен предплечью.



Сумма векторов, соответствующих мышцам руки, найденная по правилу параллелограмма.


Если векторов больше двух, их сумму можно найти по правилу многоугольника. Заключается оно в том, что конец каждого вектора совмещается с началом следующего. Суммой исходных векторов будет вектор, начало которого совпадает с началом первого вектора, конец — с концом последнего вектора. Этот метод полезен при вычислении скорости движения корабля, полета птиц, перемещения пловца или рыбы.

В примерах с птицей или рыбой результирующая скорость будет равна сумме всего двух векторов. Но в силу особенностей задачи для сложения векторов используется не правило параллелограмма, а правило многоугольника.

Допустим, что рыба или птица движется в воде или в воздухе со скоростью, обозначаемой вектором VA->, VM-> — скорость течения воды (или ветра). Как следствие, вектор результирующей скорости V-> будет равен сумме векторов VA-> и VM->, определяемой по правилу многоугольника.



Сумма векторов в примере с полетом птицы, найденная по правилу многоугольника.


Достаточно помнить, что во всех подобных примерах, если вы хотите найти результат как вектор-столбец, к примеру F->, V->:


нужно сложить векторы по тому же правилу, что и матрицы, то есть FU->FИ->, FL->FM-> и VA-> + VM-> соответственно.


Умножение векторов и применение этой операции в нейронных сетях

Помимо сложения, существует множество способов применения других операций над векторами. Так, умножение векторов успешно используется в математических моделях, описывающих наиболее характерные функции мозга.

Когда мы говорили об операциях над матрицами, мы представили модель нейронной сети, основанную на произведении вектора и матрицы:


Нейронную сеть также можно представить в более простом виде:

M·u-> = v->.

В соответствии с вышесказанным, u-> — вектор, представляющий слой входных, или афферентных, нейронов, вектор v-> — слой выходных, или эфферентных нейронов.

М — матрица связей между нейронами этих двух слоев, также известная как матрица памяти. Это название указывает на то, что именно в связях между нейронами, синапсах, мозг хранит всю известную нам информацию.

Эту гипотезу выдвинул испанский исследователь Сантьяго Рамон-и-Кахаль, а позднее развил американский ученый Дональд Хебб. В настоящее время нейробиологи считают, что именно в связях между нейронами фиксируются черты лиц знакомых нам людей, очертания букв, чисел и многие другие образы.



Сантьяго Рамон-и-Кахаль (1852–1934) в лаборатории. Справа изображен один из его рисунков, описывающих нейронные сети.


Следовательно, если мы рассмотрим произвольную строку матрицы М как вектор-строку, описывающий связи между определенным выходным нейроном и всеми входными нейронами, то состояние этого выходного нейрона можно будет вычислить так, как мы объясняли в прошлой главе. Операция над векторами называется скалярным произведением. Рассмотрим два вектора: вектор-строку а-> (исключительно из формальных соображений дополним это обозначение буквой t, что означает «транспонированный») и вектор-столбец Ь->. Скалярное произведение этих двух векторов будет равно:


Выполнив указанные арифметические действия, получим итоговый результат, равный 4. Скалярное произведение, которое также называют внутренним произведением векторов, — это число, указывающее длину проекции вектора-строки а-> на вектор Ь->. Если известны длины обоих векторов, |а->| и |Ь->|, а также угол α между ними, то скалярное произведение векторов а->·Ь-> будет равно |а->|·|Ь->|·cos α. Этот результат представляет для нас особый интерес, если учесть, что |а->|·cos α — это значение проекции вектора а-> на вектор Ь->.



Скалярное произведение векторов а->·Ь->

* * *

ЧЕМУ РАВНА РАБОТА, КОГДА МЫ ТЯНЕМ ИЛИ ТОЛКАЕМ ГРУЗ?

Вычисление работы, которую мы совершаем, когда тянем груз по земле, — еще один пример, когда используется скалярное произведение векторов. Согласно законам классической механики, работа определяется как скалярное произведение действующей на предмет силы F-> и перемещения D->. Иными словами, если векторы F-> и D-> расположены под углом друг к другу, работа А будет равна |F|·|D|·cos α. Обратите внимание, что при неизменной силе F-> работа будет изменяться в зависимости от угла между векторами. В самом деле, если векторы F-> и D-> имеют одинаковое направление, угол между ними равен 0, и работа будет максимальной, так как косинус 0 равен 1. Нетрудно видеть, что при α > 0° работа будет меньше максимума.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Том 28. Математика жизни. Численные модели в биологии и экологии."

Книги похожие на "Том 28. Математика жизни. Численные модели в биологии и экологии." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рафаэль Лаос-Бельтра

Рафаэль Лаос-Бельтра - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии."

Отзывы читателей о книге "Том 28. Математика жизни. Численные модели в биологии и экологии.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.