» » » » Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.


Авторские права

Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Здесь можно скачать бесплатно "Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.
Рейтинг:
Название:
Том 28. Математика жизни. Численные модели в биологии и экологии.
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0723-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Том 28. Математика жизни. Численные модели в биологии и экологии."

Описание и краткое содержание "Том 28. Математика жизни. Численные модели в биологии и экологии." читать бесплатно онлайн.



Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.






Если вы примете два лекарства или более, их совокупный терапевтический эффект не будет равен сумме эффектов отдельных медикаментов. Как правило, они вступают в реакцию между собой, причем часто во вред организму.



Нелинейные системы: их сложно изучить, так как не существует одного математического метода, описывающего их все, хотя их поведение и похоже. К примеру, если мы подтолкнем маятник, он будет совершать колебания до тех пор, пока не остановится. Похожие ситуации наблюдаются в иммунной системе и в долговременной памяти человека.


Любопытная особенность нелинейных систем состоит в том, что их поведение может быть хаотическим. Хаотические системы — это системы, обладающие сложным поведением, которое непросто спрогнозировать, так как они одновременно стремятся к равновесному состоянию и отдаляются от него. К примеру, атмосфера и климат, тектонические плиты, эпилепсия, популяции и многие другие явления, о которых мы расскажем в этой книге, представляют собой хаотические системы и описываются уравнением Ферхюльста. Изучение хаоса стало популярным в биологии благодаря фракталам — их характерным примером в природе является ветвление растений.

В середине 1980-х ученые объединили нелинейные, хаотические и диссипативные системы в одно целое — сложные системы, изучению которых в биологии уделяется наибольшее внимание. К таким системам относятся, например, муравейники, мозг, иммунная система, клетка, морфогенез или экосистемы. В некоторых случаях сложные системы изучаются с применением стандартных методов математической биологии. Однако некоторые системы настолько сложны, что изучить их можно только альтернативными компьютерными методами, позволяющими найти лишь приближенные решения. Такие методы называются эвристическими. К примеру, в настоящее время метод клеточных автоматов является одной из альтернатив моделированию сложных систем, для которых неизвестны описывающие их дифференциальные уравнения. Классический пример клеточного автомата — колония муравьев. В некоторых случаях, несмотря на то что дифференциальные уравнения, описывающие систему, известны (например, в случае с пятнами на коже позвоночных), поведение системы быстрее и удобнее смоделировать с помощью клеточных автоматов. Кроме того, клеточные автоматы позволяют наглядно изобразить узоры, к примеру полоски зебры, что при использовании дифференциальных уравнений невозможно. Еще одним примером служит клеточный автомат Ва-Top, описывающий модель «хищник — жертва» Лотки — Вольтерры.

В этой главе мы коротко обрисовали основные этапы развития математической биологии. Обратите внимание, что не только зарождение, но и последующее развитие этой дисциплины неизменно находилось под большим влиянием преобладавших на тот момент физических интерпретаций жизни. Более того, математическая биология — это дисциплина, которая способствовала тщательному анализу биологических явлений и экспериментальных данных. Сегодня одним из самых важных достижений математической биологии являются математические модели, позволяющие проводить с помощью компьютера сложные эксперименты.


Математические модели в биологии

Человек всегда испытывал потребность понимать, контролировать и предсказывать поведение всего сущего. Для этого ученые всех времен и народов создавали модели окружающего мира, то есть представления или абстракции некоторой системы или явления.

Модель обладает несколькими полезными свойствами. С одной стороны, она позволяет понять и объяснить то или иное явление — в качестве примера можно привести модель клеточного цикла или метаболизма глюкозы. С другой стороны, что особенно важно, она позволяет предсказать состояние или поведение изучаемой системы в будущем: это может быть прогнозирование климата или описание какой-либо гипотетической ситуации, например воздействия аварии на атомной электростанции на флору и фауну региона.

Также компьютерное моделирование позволяет ученым проверить те или иные гипотезы. К примеру, можно провести эксперимент, опровергающий гипотезу о происхождении жизни или позволяющий рассмотреть механизм эволюции конкретного вида. Модель может использоваться и для того, чтобы вдохновить, например, группу инженеров на поиски решения задачи. В любом случае построение моделей очень важно как в силу их практической ценности, так и из-за того, что моделирование — единственный способ, который позволяет постепенно выстроить картину окружающего мира.

В биологии, как и в других науках, наиболее полезны математические модели: они в абстрактной форме представляют систему или явление с использованием языка и формальных средств математики. К примеру, в модели клетки, сердца или экосистемы составные части объекта и взаимодействие между ними представлены математическими выражениями. Эти выражения связывают множество входных переменных I1, I2, …, In и выходную переменную О. Входные переменные обозначают величины, которые можно наблюдать (и измерить) в ходе эксперимента. Обычно одна из этих переменных — время, t. Она обозначает момент времени, в который были получены входные значения I1(t), I2(t), …, In(t). Как только эти значения определяются экспериментально или любым другим способом (например, на основе каких-либо теоретических предпосылок), они вводятся в модель. Используя математические выражения модели, ученый определяет значение выходной переменной O(t), которое отражает какое-либо свойство системы. Обычно этим свойством является состояние или поведение системы в определенный момент времени t.

В математических выражениях используются параметры. В отличие от входных и выходных переменных, они обозначают величины, которые нельзя наблюдать в ходе эксперимента напрямую, например уровень рождаемости, константа распада, скорость биохимической реакции и т. д. Как следствие, значения параметров устанавливаются в лаборатории или при полевых исследованиях.

Для определения приближенного значения параметра используются сложные статистические методы. Однако иногда это значение уже известно: его можно найти в таблицах, опубликованных другими исследователями. В качестве примера можно привести калорийность продуктов в модели, связанной с диетами. Другие известные параметры — это сезонный уровень заболеваемости гриппом или время роста культуры бактерий. Параметры связывают входные переменные I1(t), I2(t), …, In(t) с выходной переменной O(t) посредством выражений математической модели.



Математическая модель, входные переменные (I) и выходная переменная (О).


Компьютер как пробирка

Моделирование — одно из основных понятий современной науки — заключается в прогнозировании будущего состояния системы, O(+ 1), на основе определенной вычислительной модели. К примеру, прогноз погоды на ближайшие дни основан на вычислительной модели климата, прогнозирование численности волков и зайцев в определенном регионе производится на основе модели «хищник — жертва», а число людей, которые заболеют сезонным гриппом, можно спрогнозировать с помощью вычислительной модели эпидемии гриппа. Таким образом, для составления прогнозов требуется вычислительная модель.

В общем случае такая модель — это компьютерная программа, написанная на одном из языков программирования (Visual Basic, С/C++, Java и т. д.). Моделирование заключается в том, чтобы заставить математическую модель работать на компьютере в поисках ответа на вопросы, касающиеся будущего состояния системы: «что произойдет, если…?». Таким образом, компьютер превращается в пробирку, подлинную лабораторию, где можно исследовать явления, которые нельзя изучить при полевых исследованиях или в лаборатории.

Существует несколько способов компьютерного моделирования. Во-первых, оно может заключаться в определении начальных условий и будущего состояния системы. Начальные условия — это значения входных переменных модели (они известны), на основе которых выполняется прогноз. Ученые называют отправную точку модели нулевым моментом времени, поэтому начальные условия записываются так: I1(0), I2(0)…, In(0). К примеру, если на сегодняшний день свиным гриппом заболели 1247 человек, из которых 1240 выжили, семь — умерли, то начальные условия таковы: I1(0) = 1247, I2(0) = 1240 и I3(0) = 7. Зная эти начальные условия и применив вычислительную модель эпидемии, можно задаться вопросом: сколько человек заболеют гриппом через семь дней?


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Том 28. Математика жизни. Численные модели в биологии и экологии."

Книги похожие на "Том 28. Математика жизни. Численные модели в биологии и экологии." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рафаэль Лаос-Бельтра

Рафаэль Лаос-Бельтра - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии."

Отзывы читателей о книге "Том 28. Математика жизни. Численные модели в биологии и экологии.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.