» » » » Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел


Авторские права

Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел

Здесь можно скачать бесплатно "Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство ООО «Де Агостини»,, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел
Рейтинг:
Название:
Если бы числа могли говорить. Гаусс. Теория чисел
Издательство:
ООО «Де Агостини»,
Жанр:
Год:
2012
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Если бы числа могли говорить. Гаусс. Теория чисел"

Описание и краткое содержание "Если бы числа могли говорить. Гаусс. Теория чисел" читать бесплатно онлайн.



При жизни Карл Фридрих Гаусс получил титул короля математиков. Личность этого ученого можно сравнить с личностью другого его гениального современника и соотечественника — Вольфганга Амадея Моцарта. Оба были вундеркиндами, которым покровительствовали и помогали получить образование представители власти. Но в отличие от композитора, Гауссу повезло прожить долгую и спокойную жизнь. Он сделал много открытий в таких научных областях, как геометрия, астрономия, физика и статистика.

Прим. OCR: Знак "корень квадратный" заменен на SQRT(), врезки обозначены жирным шрифтом.






Комплексные числа имеют алгебраическую структуру поля с операциями суммы и произведения. Сначала дадим им определения и покажем, что это внутренние операции, то есть что мы получаем комплексные числа, когда оперируем ими.

— Сумма:

(a + bi) + {c + di) = a + c + (b + d) i.

— Произведение:

(a + bi) · (c + di) = ac + adi + bci + bdi² = ac-bd + (be + + ad) i.

При таком определении операций у чисел есть необходимые свойства для того, чтобы иметь алгебраическую структуру поля:

— ассоциативность обеих операций;

— коммутативность обеих операций;

— существование нейтрального элемента (0 для суммы и 1 для произведения);

— существование результата, противоположного сумме, и результата, обратного произведению;

— дистрибутивность.

Доказательство этих свойств следует непосредственно из определений. Наличие структуры поля позволяет работать с комплексными числами, используя все возможности, которые предоставляет алгебра.


ЛЕОНАРД ЭЙЛЕР

Эйлер (1707-1783) — швейцарский математик и физик. Речь идет о главном математике XVIII века и одном из самых великих математиков всех времен. Эйлер долгие годы жил в России, где был почетным гостем Екатерины I и ее придворных (в то время в России существовала традиция приглашать наиболее крупных ученых в Академию наук). Эйлер осуществил важные открытия в таких областях, как вычисления, или теория графов (графы — это математическая модель множества узлов и их соединений с помощью ребер, ориентированных либо нет; они имеют широкое применение для представления сети дорог или планов городов). Эйлер также ввел значительную часть современной терминологии и математических обозначений, например понятие математической функции. Он определил число е, одну из самых используемых констант, породившую натуральные логарифмы. Также Эйлер известен своими работами в области механики, оптики и астрономии. Он входит в число наиболее плодовитых ученых: полное собрание его сочинений могло бы занять от 60 до 80 томов. И действительно, даже через 50 лет после смерти математика Петербургская академия наук все еще публиковала статьи Эйлера, хранящиеся в ее архивах. Лаплас, говоря о влиянии ученого на последующих математиков, заметил: «Читайте Эйлера, читайте Эйлера, он учитель всех нас».



В ту эпоху превалировала мысль о том, что числа -- это объекты, которые можно складывать и умножать, но не изображать. И потребовалось 50 лет для того, чтобы Гаусс решился открыть коллегам графические леса, которыми он воспользовался в диссертации. Эта теорема так захватила Гаусса, что он нашел еще три ее доказательства. Второе возникло через год после защиты, и оно дополняло некоторые пропуски первоначального варианта. Третье доказательство, выдвинутое в 1815 году, было основано на идеях Эйлера, в нем не применяются геометрические положения, и это первая серьезная попытка чисто алгебраического доказательства с открытым использованием комплексных чисел. Тут же Гаусс критикует попытки других математиков, основанные на аналитических методах. Последнее доказательство было получено в 1849 году, в связи с 50-летием докторской диссертации. Оно очень похоже на первое, но в этот раз Гаусс приводит все геометрические рассуждения. Чтобы понять важность диссертации Гаусса, достаточно отметить, что доказательство теоремы повергло в прах Эйлера, Лагранжа и Лапласа — трех величайших математиков в истории.

На основе работ Гаусса можно было подступиться к поиску корней многочлена любой степени. Для уравнений до пятой степени (n = 5) были найдены формулы нахождения корней с помощью коэффициентов самого многочлена, что называется решением в радикалах. Формулы были того же типа, что мы использовали для решения уравнений второй степени, однако для уравнений пятой степени их никак не могли найти. Решение нашлось у очень молодого французского математика Эвариста Галуа (1811-1832), который погиб в результате дуэли, едва ему исполнился 21 год. Галуа доказал, что невозможно решить уравнения пятой степени с помощью коэффициентов самого многочлена, и нашел альтернативные методы нахождения корней, пользуясь результатами Гаусса.

Галуа представил свои математические результаты, известные как теория Галуа, в Парижскую академию наук в 1830 году, чтобы получить премию по математике. Эта работа так и не была оценена, поскольку попала в руки Огюстена Луи Коши (1789-1857); тот признал себя недостаточно компетентным для ее разбора и передал заметки Жозефу Фурье (1768— 1830), который, как секретарь академии, должен был найти нового специалиста для анализа. Смерть Фурье оставила эти поиски незавершенными, статья Галуа затерялась и так и не была опубликована. Однако за ночь до дуэли Галуа, который понимал, что его шансы выжить в поединке невысоки, и в то же время осознавал важность своих открытий, торопливым почерком написал заметки, в которых обобщалось то, что известно  как теория Галуа о решении уравнений. Именно это его письменное завещание вошло в историю и позволило последующим математикам восстановить результаты молодого гения. Известно, что в том году премию академии получили Нильс Хенрик Абель (1802-1829) и Карл Густав Якоб Якоби (1804-1851), двое из самых талантливых математиков своего времени. Однако вопрос, одержали бы они победу, если бы исходная работа Галуа не потерялась, так и останется без ответа. Можно лишь утверждать, что открытия молодого Галуа в математике можно сравнить лишь с открытиями самого Гаусса.


«АРИФМЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ»

Гаусс начал свои исследования по теории чисел во время пребывания в Коллегии Карла в 1795 году, но к работе над своим основным трудом, Disquisitiones arithmeticae («Арифметические исследования»), он приступил во время пребывания в Гёттингенском университете с 1795 по 1798 год. Мы это знаем благодаря его научному дневнику, в котором уже в 1796 году появляются два блестящих результата: разложение любого целого числа на три треугольных и построение правильного 17-угольника, о которых мы уже говорили в главе 1. Они оба включены в «Исследования», увидевшие свет в Лейпциге летом 1801 года, через три года после возвращения Гаусса в его родной город Брауншвейг. Ученый снова отложил публикацию своих результатов до тех пор, пока не смог сделать этого в формате книги.

В «Исследованиях» Гаусс придал новое направление теории чисел, которая перестала быть набором разрозненных результатов и превратилась в такую же важную математическую дисциплину, как анализ или геометрия.

Работа разделена на семь глав, или разделов. Первые три раздела вводные, разделы с IV по VI образуют центральную часть работы, а раздел VII — это маленькая монография, посвященная отдельной теме, но связанная с остальными главами.




Молодому Гауссу повезло, что он мог рассчитывать на материальную помощь герцога Брауншвейгского (сверху), который оплачивал его образование и покровительствовал ученому до своей смерти в 1806 году. Благодаря влиянию герцога Гаусс в 1791 году поступил в Коллегию Карла (внизу), где начал работу над некоторыми своими важнейшими математическими результатами, отраженными в «Арифметических исследованиях», обложка которых представлена на среднем фото.


В разделе I, состоящем всего из пяти страниц, вводятся элементарные понятия, такие как признаки делимости на 3, 9 и 11. Кроме того, Гаусс дает определение сравнения по модулю; это понятие будет раскрыто в разделе II: если заданы целые числа а и b и их разница (а - b или b - а) делится без остатка на число m, мы говорим, что a, b сравнимы по модулю m, и это записывается следующим образом: a = b (mod m). Так, 56 = 6 (mod 5) или 47 = 14 (mod 11).

Сравнения по модулю — очень важное открытие в математике, они помогают выполнять вычисления любого типа. Их идея близка к тому, как работают с обычным циферблатом часов, поэтому сравнения также называют вычислителями часов. Если обычные часы со стрелками показывают 9, и проходит 4 часа, стрелки будут показывать 1. То есть 13=1 (mod 12). Такое вычисление, как 7² = 7 · 7, в итоге дает 1 по модулю 12, поскольку 49, разделенное на 12, в остатке дает 1. Результат сравнения по модулю — это всегда остаток от деления числа на определенный модуль.

Значимость этой системы проявляется, когда речь идет о более сложных вычислениях. Если нужно вычислить 7³ = 7 · 7 · 7, вместо того, чтобы умножать 49 на 7, Гаусс мог ограничиться тем, чтобы умножить 7 на результат последнего сравнения по модулю, то есть 1, произведение будет равно, без сомнения, 7. Так, Гаусс знал, что произведение — это число, которое при делении на 12 в остатке дает 7. Этот метод может быть применен на больших числах, которые превышают возможность вычисления. Не имея ни малейшего понятия о значении 799, с помощью сравнений по модулю ученый знал, что если разделить это число на 12, в остатке получится 7. Исследования Гаусса в этой области арифметики были революционными для математики начала XIX века и позволили ученым обнаруживать структуры, до этого скрытые. Сегодня арифметика сравнений по модулю, также называемая модульной арифметикой, является фундаментальной для безопасности в интернете, где сравнения используются для величин, превышающих количество атомов во Вселенной.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Если бы числа могли говорить. Гаусс. Теория чисел"

Книги похожие на "Если бы числа могли говорить. Гаусс. Теория чисел" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Антонио Лизана

Антонио Лизана - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел"

Отзывы читателей о книге "Если бы числа могли говорить. Гаусс. Теория чисел", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.