» » » » Рудольф Сворень - Шаг за шагом. Транзисторы


Авторские права

Рудольф Сворень - Шаг за шагом. Транзисторы

Здесь можно скачать бесплатно "Рудольф Сворень - Шаг за шагом. Транзисторы" в формате fb2, epub, txt, doc, pdf. Жанр: Радиотехника, издательство "Детская литература", год 1971. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рудольф Сворень - Шаг за шагом. Транзисторы
Рейтинг:
Название:
Шаг за шагом. Транзисторы
Издательство:
"Детская литература"
Год:
1971
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Шаг за шагом. Транзисторы"

Описание и краткое содержание "Шаг за шагом. Транзисторы" читать бесплатно онлайн.



Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.

Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.






В чистом, беспримесном полупроводнике число свободных электронов и число дырок одинаково. Однако для создания транзисторов нужны полупроводниковые материалы с разными типами проводимости — только с электронной или только с дырочной. Это значит, что у одних материалов число свободных электронов должно во много раз превышать число дырок, чтобы в этих полупроводниках возникал в основном электронный ток. А у других материалов, наоборот, дырок должно быть намного больше, чем свободных электронов, и ток в них должен создаваться в основном только дырками. При этом общий заряд куска германия или кремния должен быть равен нулю — в целом в нем не должно быть никаких лишних зарядов.

Вот так задача! Это уже почти то же самое, что залезть в шар и стать там в угол. Как можно, например, добавить в полупроводник свободные положительные заряды, не меняя общего числа зарядов в этом полупроводнике? Каким образом, не нарушая электрического равновесия полупроводника, можно получить в нем избыток тех или иных свободных зарядов? Это можно сделать, добавляя в чистый полупроводник определенные примеси.

Дело в том, что в кристаллах углеродного семейства — в германии и кремнии — действует неписаный закон: «Структура важнее всего». Это значит, что если ради сохранения своей прекрасной алмазоподобной кристаллической решетки атомы должны, принести какие-либо жертвы, то эти жертвы будут принесены: «Структура важнее всего».

Вот что произойдет, например, если в чистый германий во время его плавки добавить атом мышьяка. Такой большой предмет, как атом мышьяка, не может находиться где-то в межатомном пространстве, и поэтому при затвердевании расплава он займет место в кристаллической решетке наравне с атомами самого германия. Но у мышьяка на внешней орбите не четыре электрона, а пять. И этот пятый электрон никак не сможет найти себе места в четкой системе межатомных связей — ведь каждый атом, который входит в решетку алмазного типа, может отдать соседям только четыре электрона. И, подчиняясь закону «Структура важнее всего», пятый электрон уйдет с орбиты в дальние странствия, а сам атом мышьяка превратится в положительный ион (рис. 12).



Рис. 12. При введении донорной примеси в полупроводниковом кристалле появляются свободные электроны и неподвижные положительные ионы.


Обратите внимание — мы не называем этот ион дыркой. Вцепившись своими четырьмя электронами в соседей, атом мышьяка не сможет ни взять электрон со стороны, ни отдать его. Этот положительный ион — атом мышьяка — будет неподвижно стоять на месте, не участвуя в создании электрического тока. Вот почему, добавляя в германий или кремний атомы с пятью электронами на внешней орбите, мы создаем в этих полупроводниках дополнительную электронную проводимость, не увеличивая дырочной проводимости и не нарушая общего электрического равновесия кристалла.

Примеси, которые увеличивают электронную проводимость полупроводника, называются донорными примесями. Слово «донор» означает «отдающий» и говорит о том, что примесь как бы добавляет в полупроводник свободные электроны.

Обратный результат можно получить, если добавить в чистый германий (или кремний) атомы с тремя электронами на внешней орбите; например, атомы лития. Для того чтобы не показаться чужаком и не испортить структуры — «Структура важнее всего!» — такой атом поместит к себе на орбиту чужой электрон, естественно, украденный у нейтрального атома германия. А поскольку этот чужой, четвертый электрон будет для лития лишним, то атом лития превратится в неподвижный отрицательный ион. Сам же атом германия, отдавший электрон пришельцу, станет дыркой — этот атом всегда с радостью примет на свободное место в своей внешней орбите любой электрон-перебежчик.

Вывод прост: добавляя в германий или кремний атомы с тремя электронами на внешней орбите, мы создаем в этих полупроводниках дополнительную дырочную проводимость, не увеличивая электронной проводимости. И опять-таки не нарушая общего электрического равновесия (рис. 13).



Рис. 13. При введении акцепторной примеси в полупроводниковом кристалле появляются свободные положительные заряды (дырки) и неподвижные отрицательные ионы.


Примеси, которые увеличивают дырочную проводимость полупроводника, называются акцепторными примесями. Слово «акцептор» означает «отбирающий» и говорит о том, что примесь как бы отбирает у полупроводника свободные электроны и основным типом свободных зарядов становятся дырки.

После долгих блужданий по трудным дорогам физики и химии мы получили наконец те самые бесценные материалы, которые нужны для изготовления нашего управляющего прибора, нашего скульптора. Именно эти материалы — полупроводники с электронной или дырочной проводимостью — позволят нам искусственно создать процесс для управления мощными потоками энергии с помощью слабого электрического сигнала. Прибор, в котором будет осуществляться такое управление, как вы уже, конечно, догадались, и есть полупроводниковый триод — транзистор. Но, получив наконец возможность непосредственно познакомиться с главным героем нашей книги — с полупроводниковым триодом, мы в интересах дела ненадолго отложим это знакомство и сначала выясним, как устроен и как работает полупроводниковый диод.

Глава II

ОТ ДИОДА ДО ТРИОДА



Не подумайте, пожалуйста, что знакомство с полупроводниковым диодом — это отклонение от главного пути. Диод — своего рода составная часть транзистора, и транзистор можно рассматривать как два объединенных в одно целое полупроводниковых диода. Вот почему знакомиться с диодом мы будем достаточно подробно, считая, что при этом мы одновременно знакомимся и с транзистором. Кроме того, диод как самостоятельный элемент весьма часто встречается в электронной аппаратуре, в том числе и в схемах, которые будут описаны в этой книге. Познакомившись с принципом работы и устройством диода, мы рассмотрим несколько практических схем с его участием и тем самым положим начало той части нашего путешествия, для которой нужен уже не только карандаш, но и паяльник.


МАНЕВРЫ НА ГРАНИЦЕ

Имеющихся у нас знаний вполне достаточно, чтобы построить некий условный полупроводниковый диод (рис. 14).



Рис. 14. Полупроводниковый диод — это прибор, в котором созданы две зоны с разным типом примесной проводимости: зона р и n.


Возьмем кусок чистого германия (с равным успехом можно взять и кремний, но мы для определенности ограничимся пока одним из этих полупроводников) и с одной стороны введем в него донорную примесь, с другой — акцепторную. Это значит, что в половине кристалла будет преобладать электронная проводимость, в другой — дырочная. По количеству зон с разной проводимостью построенный нами прибор как раз и получил свое название «диод»: приставка «ди» означает «два». Название это появилось намного раньше самого полупроводникового диода и относилось к некоторым другим приборам с двумя электродами и двумя выводами от них.

Влияние примесей на электрические свойства полупроводниковых материалов огромно. Так, например, если в германий добавить по весу лишь одну миллионную часть мышьяка, то число свободных электронов в германии увеличится в тысячи раз! Подобным же образом миллионные весовые доли акцепторной примеси — например, лития — в тысячи раз повышают дырочную проводимость полупроводника.

Объясняется столь сильное влияние примесей довольно просто. Дело в том, что своих собственных электронов и дырок в чистом германии немного. Далеко не каждый его атом выпускает на свободу свой электрон — в противном случае этих электронов было бы очень много и вместо полупроводника мы имели бы обычный проводник. В среднем при комнатной температуре на каждый миллиард атомов германия приходится лишь один свободный электрон.

В то же время каждый атом донорной примеси, занявший место в кристаллической решетке, обязательно один из пяти своих внешних электронов выбрасывает в межатомное пространство. Ведь для связи с соседями нужны лишь четыре электрона: как известно, «структура прежде всего».

Теперь посчитаем. Если вес примеси составляет миллионную часть веса германия (мы считаем вес атомов германия и примеси одинаковым и миримся с ошибкой на несколько процентов), то на каждый миллиард атомов германия приходится тысяча атомов примеси, потому что миллионная часть миллиарда и есть тысяча. А это значит, что на каждый миллиард атомов германия теперь приходится один собственный свободный электрон и тысяча свободных электронов, принесенных примесью.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Шаг за шагом. Транзисторы"

Книги похожие на "Шаг за шагом. Транзисторы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рудольф Сворень

Рудольф Сворень - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рудольф Сворень - Шаг за шагом. Транзисторы"

Отзывы читателей о книге "Шаг за шагом. Транзисторы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.