» » » » Дэвид Вебер - Вселенная Хонор Харрингтон


Авторские права

Дэвид Вебер - Вселенная Хонор Харрингтон

Здесь можно скачать бесплатно "Дэвид Вебер - Вселенная Хонор Харрингтон" в формате fb2, epub, txt, doc, pdf. Жанр: Боевая фантастика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Вселенная Хонор Харрингтон
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Вселенная Хонор Харрингтон"

Описание и краткое содержание "Вселенная Хонор Харрингтон" читать бесплатно онлайн.








Это сводило на нет практическое использование гиперпространства до изобретения гипержурнала в 731 году э.р. Гипержурнал представляет собой аналог инерциальной навигационной системы разработанной на Земле еще в двадцатом веке. Гипержурнал позволяет вести счисление пути комбинируя данные чрезвычайно точных сенсоров, данные о работе двигателей и отслеживая гравитационные градиенты по мере полета. Ранние модели гипержурналов имели точность не более 10 световых секунд на световой месяц, что значило, что на пути в 60 световых лет истинная позиция могла отличаться от вычисленной на два световых часа. Таким образом первым навигаторам гиперкосмоса следовало быть чрезвычайно внимательными и учитывать существенные погрешности прокладки курса. Современные же (1900 год э.р.) гипержурналы обеспечивают точность 0, 4 световых секунды на световой месяц (то есть отклонение позиции ГЖ от истинной после путешествия в 60 световых лет не превысит 288 световых секунд, что составляет менее 5 световых минут).

С самого начала освоения гиперпространства было известно о наличии множества гиперполос и о том, что чем «выше» полоса, тем больше сжатие пространства и, следовательно, больше эффективная скорость. Но использование высоких гиперполос было нерационально по двум главным причинам. Во-первых, хотя потери скорости при переходе в более высокую полосу каждый раз составляют 92% потерь предыдущего перехода (то есть при входе в альфа-полосу теряется 92% скорости, в бета-полосу — 84, 64%, гамма — 77, 87% и так далее), это не решает проблемы с расходом рабочего тела реактивного двигателя на разгон после каждого перехода.

Во-вторых, при переходе из полосы в полосу возникают завихрения энергии создающие «пространственный сдвиг» погубивший множество ранних гиперкораблей. И пространственный сдвиг становится все более опасным при продвижении к верхним полосам.

Даже для относительно «безопасных» нижних полос характерны потоки заряженных частиц и фокусированных гравитационных потоков. И если защитится от радиации не так сложно, то гравитационный сдвиг может разнести корабль на кусочки в любой полосе.

В гиперпостранстве гравитационные потоки приобретают форму широких, глубоких областей гравитационного напряжения пространства (до 50 световых лет шириной и вдвое меньшей глубины) «двигающегося» по гиперкосмосу. На самом деле поток остается на месте, но энергия и заряженные частицы, подхваченные его воздействием, перемещаются со световой или околосветовой скоростью. В этом смысле гравитационный поток служит переносчиком других энергий, а сам остается неподвижным, если не считать небольшого дрейфа. В основном именно дрейф потока делает его таким опасным. Точная аппаратура исследовательского корабля может отследить положение потока, но к моменту полета следующего корабля, поток может оказаться не там где его ожидают. Основные потоки вдоль главных маршрутов движения описаны достаточно аккуратно и о них собрано достаточное количество наблюдений, чтобы предсказать их дрейф. Более того — многие потоки можно считать «фиксированными», имея в виду, что их перемещения очень малы и взаимное положение таких потоков остается постоянным. Но есть и такие потоки, алгоритм перемещения которых (если «алгоритм» вообще есть) совершенно непонятен, перемещения могут происходить в любой момент. Примером может служить Разлом Селкира расположенный между Андерманской Империей и Силезской Конфедерацией, но есть и другие. И те, что располагаются в малопосещаемых (и, соответственно, малоисследованных) областях космоса могут быть чрезвычайно непредсказуемы.

Сердцевина любого гравитационного потока намного мощнее его переферии. Поток состоит из множества слоев и завихрений, ориентированных, в основном, одинаково. Однако встречаются в потоке и слои обратного «движения».

Несмотря на размеры потока, большая часть гиперпространства от них свободна. Настоящие монстры размерами более 10-15 световых лет редки, и, даже с учетом того, что в гиперпространстве все расстояния сжимаются, промежутки между ними огромны. Хотя, конечно, по мере перехода в верхние полосы интервалы между потоками сокращаются.

Основная опасность гравитационных потоков для первых поколений гиперкораблей заключалась в так называемом феномене «гравитационного сдвига». Это происходило, когда корабль входил в область действия потока, или. того хуже, в область подверженную влиянию нескольких потоков. В таких условиях сила гравитации, действующая на различные части корабля, могла различаться в сотни и тысячи раз, что неизменно приводило к катастрофическим результатам.

Теоретически, корабль мог «проскользнуть» в гравитационный поток под очень острым углом, избегая сдвигов, которые могли разнести его на кусочки. На практике же, единственным способом избежать гравитационного сдвига было избегать потоков, хотя это было не всегда возможно. Не было возможности засечь поток, прежде чем корабль войдет в него, и не зная о приближении потока не удавалось проложить курс в обход. Конечно, было возможно обнаружить факт вхождения в периферию потока и, если повезет, предпринять маневр уклонения, но шансы на спасение все равно были не очень велики. Гравитационные потоки долго оставались самой грозной опасностью гиперпространственных путешествий.

В 1246 году э.р. был создан первый гравитационный двигатель с фазированной решеткой — импеллер. Изобрели его на Беовульфе — колонии в системе Сигмы Дракона. Этот двигатель использовал для своей работы искусственно созданные гравитационные потоки, подобные тем, что в гиперпространстве наблюдали веками. Импеллер представляет собой набор генераторов, создающих пару полос «напряженного» пространства, одну «сверху» корабля и одну «снизу». Полосы — это своего рода кусочек псевдо-гиперпространства с «прирученным» гравитационным потоком. Поскольку полосы расположены под углом друг к другу, они «прихватывают» клин обычного пространства (широкий в передней части, и узкий сзади). Корабль ускоряется между полос примерно так же, как серфингист, оседлавший гребень волны. «Импеллерный клин», теоретически, может развивать неограниченные ускорения, но, к сожалению, предел ставит способность экипажа переносить ускорение. Зато ускорение можно поддерживать постоянно , безо всякого расхода рабочего тела, и, пока вы подаете энергию на генераторы, продолжительность работы двигателя не ограничена.

При межзвездных полетах, тем не менее, быстро выяснилось слабое место импеллерного двигателя. Для него гравитатационный сдвиг был куда опаснее, чем для традиционных реактивных кораблей, из-за интерференции гравитационного потока и искусственного напряжения гравитации на клине.

Военные, со своей стороны, быстро выяснили, что, хотя передняя и задняя части клина должны оставаться открытыми, можно установить дополнительные генераторы боковых гравитационных «стен» для защиты от вражеского огня. Ибо даже лазерный луч (генерировавшийся по технологиям того времени) не может преодолеть зону в которой локальная гравитация меняется от нуля до сотен тысяч g . Возможность генерировать лучи достаточной мощности, чтобы «прожечь» гравистену хотя бы на короткой дистанции не появится еще несколько веков, но уже через пятьдесят лет будут разработаны пенетраторы давшие ракетам, также оснащенным импеллерными двигателями, возможность проникать за гравистенку. С того времени началась постоянная гонка между разработчиками защитных систем, модифицируемых чтобы противостоять пенетраторам, и разработчиками новых пенетраторов, созданных чтобы преодолевать защиту.

Недостатки импеллерного двигателя быстро стали очевидными кораблестроителям Беовульфа и несколько десятилетий он считался пригодным только для внутрисистемных полетов. Тем не менее, в 1273 году э.р. ученый со Старой Земли, Адрианна Варшавская, нашла способ применения новой технологии для гиперпространственного полета. До того любая попытка задействовать импеллер в гиперпространстве неизбежно заканчивалась катастрофой, но доктор Варшавская нашла обходной путь решения проблемы. Она изобрела устройство способное сканировать гиперпространство на предмет наличия гравитационных потоков в радиусе пяти световых секунд от корабля (и до сих пор гравитационные сканеры называют «детекторами Варшавской»). Это дало возможность использовать импеллер между потоками, которые теперь можно было заблаговременно обнаруживать и избегать.

Одного этого было бы достаточно, чтобы заслужить вечную признательность потомков, но, по сравнению со следующим изобретением доктора Варшавской, значимость первого меркнет. Она проникла в природу феномена гравитационных потоков глубже чем кто-либо другой, и внезапно осознала возможность переконфигурировать стандартный импеллер, чтобы он проецировал свои гравитационные потоки под прямым углом к оси корабля. Тогда, конечно, пропадал эффект «захвата» куска обычного пространства, но зато эти перпендикулярные гравитационные поля можно было синхронизировать по фазе с потоком и устаранить опасную интерференцию. Более того, новые поля стабилизируют корабль относительно потока и, тем самым, устраняют опасность гравитационного сдвига. Новые импеллерные узлы, «альфа-узлы», которые она установила на свой корабль «Флитвинг», развернули гигантские нематериальные паруса: круглые, тарелкообразные гравитационные полосы, более двухсот километров в диаметре. Совместно с ее же гравитационными детекторами «читающими» гравитационные потоки, альфа-узлы позволяли в буквальном смысле слова «идти под парусами» в гравитационном потоке развивая неслыханные ускорения.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Вселенная Хонор Харрингтон"

Книги похожие на "Вселенная Хонор Харрингтон" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Дэвид Вебер

Дэвид Вебер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Дэвид Вебер - Вселенная Хонор Харрингтон"

Отзывы читателей о книге "Вселенная Хонор Харрингтон", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.