» » » » Жан-Поль Эймишен - Электроника?.. Нет ничего проще!


Авторские права

Жан-Поль Эймишен - Электроника?.. Нет ничего проще!

Здесь можно скачать бесплатно "Жан-Поль Эймишен - Электроника?.. Нет ничего проще!" в формате fb2, epub, txt, doc, pdf. Жанр: Радиотехника, издательство "Энергия", год 1975. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Жан-Поль Эймишен - Электроника?.. Нет ничего проще!
Рейтинг:
Название:
Электроника?.. Нет ничего проще!
Издательство:
"Энергия"
Год:
1975
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Электроника?.. Нет ничего проще!"

Описание и краткое содержание "Электроника?.. Нет ничего проще!" читать бесплатно онлайн.



Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.

Книга рассчитана на широкий круг читателей.






Н. — Но в этой лампе довольно трудно изменить частоту, так как для этого пришлось бы одновременно изменять настройку обоих резонаторов.


Отражательный клистрон

Л. — Чтобы избавиться от этого недостатка, создали так называемый отражательный клистрон. Эта лампа имеет только один резонатор, на котором создается высокий положительный потенциал, а анод заменен электродом с большим отрицательным потенциалом. Электроны, вылетающие с катода, проходят через резонатор и приближаются к отрицательному электроду, тормозятся им и возвращаются к резонатору. В результате электроны второй раз проходят через резонатор, который, таким образом, выполняет роль и первого и второго резонаторов; при обеспечении необходимой связи лампа начинает генерировать. Отражательные клистроны используются преимущественно в качестве гетеродинов радиолокационных приемников супергетеродинного типа. В этом случае гетеродин создает колебания небольшой мощности, необходимые для возникновения биений с принимаемым колебанием.

Н. — И для этого полученные с клистрона колебания подают на сетку лампы, а на ее другую сетку подают колебания, принятые антенной?

Л. — На таких высоких частотах не рекомендуется пользоваться этим методом. Обычно колебания клистрона-гетеродина направляют в объемный резонатор (кусок волновода), куда вводят также и волновод, идущий от приемной антенны. В том месте, где эти две волны сходятся, помещают крохотный кристаллический детектор, представляющий собой нелинейный элемент, необходимый для выделения биений этих двух волн. В цепи кристалла получают колебания промежуточной частоты (равной разности частот колебаний гетеродина и принимаемого сигнала). Полученные колебания промежуточной частоты усиливают высокочастотным транзисторным или ламповым усилителем.


Переключение «передача — прием»

Н. — Ты только что говорил о приемной антенне. А почему радиолокаторы имеют всего лишь одну антенну?

Л. — Правильно, антенна одна; сначала она используется для передачи, а затем для приема. Такое использование антенны приводит к весьма сложным проблемам: мощность излучаемых колебаний может превысить тысячу киловатт, тогда как приемник способен обнаружить миллионную долю микроватта. Для защиты приемника от разрушения излучаемым колебанием создали очень остроумную систему из газоразрядных ламп, заполненных газом под низким давлением, которые размещены в волноводах на пути прохождения волны или в стенке волновода. Во время передачи, когда по волноводам проходит очень большая мощность, газ в лампе ионизируется. В этих условиях он уподобляется очень хорошему проводнику — закрывает волновод, соединяющий антенну с приемником, и в последний практически ничего не попадает. При приеме отраженного сигнала его мощность настолько мала, что газ больше не ионизируется, волновод открыт и принимаемая волна свободно проходит в приемник. Другая газоразрядная лампа находится на стенке волновода между магнетроном и разветвлением волновода; она не пропускает к магнетрону принимаемую волну. Эта лампа размещена сбоку от пути следования волны, и поэтому в отличие от лампы, находящейся в ответвлении волновода к приемнику, не пропускает волну, если находящийся в ней газ не ионизирован.



Н. — Зачем понадобилось не пропускать принимаемую волну к магнетрону? Ведь она не может его разрушить.

Л. — Разумеется, нет. Но, если не сделать такого запора, часть принимаемой волны оказалась бы потерянной для приемника, а энергии поступает так мало, что напрасно транжирить ее просто глупо. Благодаря размещению газоразрядных ламп непосредственно в волноводе или на его стенке вся принимаемая энергия отраженного сигнала поступаёт в приемник.

Н. — В самом деле, система автоматического разделения сигналов сделана исключительно интересно. Но теперь я хотел бы спросить тебя, как в радиолокаторе стабилизируют напряжение питания. В блок-схеме радиолокатора, которую я смотрел, имеется несколько блоков питания, но я не понял, как они устроены.


Стабилизация напряжения с помощью стабилитрона

Л. — Ты, Незнайкин, уже немного знаешь об устройстве блоков стабилизации напряжения; вспомни, в частности, что мы с тобой говорили о стабилитронах.

Н. — Наш разговор об этих диодах я помню, но я не вижу, как их можно использовать для стабилизации напряжения.

Л. — Их просто-напросто нужно включить параллельно питаемой схеме, как я показал на рис. 162.




Рис. 162. Стабилизация напряжения с помощью диода Зенера.


Как ты видишь, стабилитрон потребляет ток, который питаемая схема не потребляет. Когда потребление этой схемы изменяется, протекающий по стабилитрону ток изменяется в противоположном направлении. Напряжение питания U устанавливают несколько выше требующегося напряжения, и избыточная мощность рассеивается на резисторе R. Внутреннее сопротивление стабилитрона значительно меньше сопротивления R, и поэтому значительно уменьшает изменения напряжения на выводах диода и питаемой схемы.

Н. — Принцип работы этого стабилизатора полностью аналогичен принципу работы стабилизатора на газоразрядных лампах. Но я подозреваю, что полупроводниковые приборы позволяют получить более совершенную схему.

Л. — И ты, Незнайкин, не ошибся. Здесь можно использовать систему автоматического регулирования, во многом похожую на сервомеханизм, которая с помощью отрицательной обратной связи поддерживает выходное напряжение неизменным; для этого стабилизатор сравнивает выходное напряжение с опорным (контрольным) напряжением, усиливает полученное в результате этого сравнения отклонение и воздействует выходным сигналом усилителя на объект регулирования.

Н. — Объяснение несколько туманно. Я предпочел бы конкретный пример.


Стабилизатор напряжения

Л. — Пожалуйста, посмотри схему, которую я подготовил для себя на рис. 163.



Рис. 163. Стабилизатор напряжения на транзисторах. Опорным напряжением служит часть напряжения, снимаемого с диода Зенера; транзистор Т2 усиливает напряжение ошибки; Т1 — мощный транзистор.


Напряжение U через резистор R3 подается на стабилитрон Д, на котором создается опорное напряжение.

Чтобы регулировать напряжение Е, мы с помощью потенциометра R4 снимем лишь часть опорного напряжения и подадим его на базу транзистора Т2. Часть стабилизируемого выходного напряжения Е через делитель напряжения R1 — R2, подается на эмиттер транзистора Т2. Если выходное напряжение Е становится слишком высоким или слишком низким, то часть его, подаваемая на эмиттер, будет соответственно отличаться от части спорного напряжения на базе Т2. Транзистор Т2 запирается или проводит. Его коллекторный ток, представляющий собой усиленное напряжение ошибки, подается на базу транзистора Т1. Связь между транзисторами очень проста, так как транзистор Т1 относится к типу р-n-р. Представь себе, что в силу каких-либо причин питаемая напряжением Е схема имеет тенденцию потреблять слишком много. Тогда напряжение Е снизится. Такое изменение произойдет и с потенциалом эмиттера транзистора Т2, что вызовет увеличение коллекторного тока транзистора Т2. Этот ток, проходя через базу транзистора Т1 значительно повысит ток в цепи коллектора транзистора Т1, что скомпенсирует первоначальное нарушение равновесия.

Н. — В этом стабилизаторе меня беспокоит то обстоятельство, что транзистор Т1 выдерживает всю разность напряжений U и Е и одновременно должен рассеивать большую мощность.

Л. — Мы должны взять мощный транзистор и установить его на хорошем радиаторе, способном рассеивать соответствующее количество тепла. Соблюдая необходимые меры, можно легко рассеивать мощность более 30 вт, что превышает возможности большинства ламп, которые ты до сих пор использовал.

Н. — В самом деле это превосходный стабилизатор напряжения, он весьма прост и в то же время обладает широкими возможностями. Вероятно, я в ближайшее время сделаю себе такой стабилизатор.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Электроника?.. Нет ничего проще!"

Книги похожие на "Электроника?.. Нет ничего проще!" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Жан-Поль Эймишен

Жан-Поль Эймишен - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Жан-Поль Эймишен - Электроника?.. Нет ничего проще!"

Отзывы читателей о книге "Электроника?.. Нет ничего проще!", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.