Александр Перельман - Биокосные системы Земли
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Биокосные системы Земли"
Описание и краткое содержание "Биокосные системы Земли" читать бесплатно онлайн.
Живые организмы и неорганическая (косная) материя на Земле тесно связаны между собой и образуют в совокупности различные сложные природные системы, которые В. И. Вернадский назвал биокосными. В книге биокосные системы рассмотрены с позиций геохимии.
Характеризуя почвы, подземные воды, биосферу и другие биокосные системы, автор рассказывает не только о том, как перемещаются атомы в этих системах, но и как происходит при этом превращение энергии, изменение информации. В последнее десятилетие изучение биокосных систем приобрело особенно большое значение в связи с проблемой охраны природы и загрязнения окружающей среды. Этим вопросам также уделено внимание.
Кора выветривания осадочных пород в степях Русской платформы представлена карбонатным параэлювием. Это продукты выветривания палеогеновых и меловых пород Приволжской возвышенности, пермских красноцветов Заволжья. Так как эти породы содержат карбонат кальция, то в коре выветривания особенно много углекислого кальция.
На Средне-Русской, Волыно-Подольской возвышенностях, Окско-Донской низменности, на равнинах Крыма и Северного Кавказа выветриваются преимущественно лёссы и лёссовидные породы — продукты карбонатного выветривания прошлых эпох. В связи с этим современные процессы с трудом могут быть отделены от древнего выветривания и осадкообразования. Но все же и здесь под черноземными и каштановыми почвами формируется кора выветривания — карбонатный неоэлювий.
Основная закономерность размещения карбонатной коры выветривания — зональность. Влияние климата здесь еще более велико, чем в распространении кислой коры, напротив, роль пород минимальна. На породах любого состава (за исключением сульфидных руд) в сухом климате формируется карбонатная кора выветривания. Во влажном климате карбонатная кора выветривания формируется на известняках и других породах, богатых карбонатом кальция. Эта форма коры здесь неустойчива. Со временем, по мере выщелачивания углекислого кальция, на поверхности образуется глинистый элювий кислого типа.
За рубежом карбонатные коры изучены во многих аридных областях — на Ближнем Востоке, в Мексике, Австралии и т. д.
Соленосный класс образуется при выветривании соленосных пород в пустынях. Толщи пород, состоящие из слоев поваренной соли, гипса, засоленных глин и т. д., встречаются на территории Средней Азии и Казахстана. Такова, например, самая высокая соляная гора СССР — Ходжа-Мумын в Южном Таджикистане, достигающая относительной высоты 900 м и сложенная в основном поваренной солью и гипсом.
Пропитанная легкорастворимыми солями кора выветривания может длительно сохраняться только в пустынях, так как при значительном увлажнении (например, в лесной зоне) растворимые соли вымываются. Очень своеобразен рельеф района развития подобной коры выветривания: в результате размывающей и растворяющей деятельности воды образуются резкие гребни, глубокие ущелья, пики, «соляные ножи», «соляные грибы», воронки и другие специфичные формы микрорельефа (соляной карст).
Пропитанная солью сухая почва почти совершенно бесплодна, в связи с чем районы развития соленосной коры выветривания имеют крайне пустынный облик. Хлор, натрий и частично сера — типоморфные ионы этой коры выветривания.
Соленосная кора кроме натрия, хлора и серы обычно содержит и другие элементы, в частности кальций в виде гипса, а также кремний, алюминий и железо, входящие в состав глинистых примесей. Однако именно наиболее подвижные элементы определяют геохимическое своеобразие данной формы коры выветривания и особенно связанных с ней почв, вод и организмов.
Глеевая кора выветривания второго ряда. Она формируется под глеевыми почвами преимущественно на гумидных равнинах. Наиболее распространен кислый глеевый класс, для которого характерны кислая реакция среды, вынос катионов и образование глинистых минералов, преимущественно гидрослюдистого типа. Однако в отличие от кислой коры здесь приобретают высокую миграционную способность железо и марганец, частично также фосфор и некоторые редкие элементы.
Кислое глеевое выветривание широко распространено в северной части Русской платформы, на большей части Западно-Сибирской низменности. На плоских водоразделах здесь развит кислый глеевый неоэлювий (он формируется и под верховыми торфяниками). Эта кора представлена подпочвенными сизыми глеевыми горизонтами, обедненными железом и марганцем.
В районах многолетней мерзлоты мерзлый горизонт является естественным водоупором, вызывающим заболачивание. В связи с этим на границе с мерзлой толщей также энергично развивается глеевое выветривание.
Распространение кислой глеевой коры выветривания на севере Европы и Азии, несомненно, связано с климатом и подчиняется зональности. Важнейшим фактором распространения этой коры в Восточной Сибири и в горах Дальнего Востока наряду с климатом являются мерзлые толщи.
Карбонатное глеевое выветривание развивается в условиях нейтральной и слабощелочной восстановительной среды, определяющей миграцию железа и марганца. При этом миграция железа происходит на сравнительно небольшие расстояния и с малой интенсивностью, а марганец мигрирует энергично.
Кора выветривания сульфидного — третьего ряда. На земной поверхности эта кора не образуется, но горизонты с сероводородной обстановкой или сульфидами могут возникать в нижней части коры выветривания окислительного ряда. Так, в зонах окисления сульфидных месторождений сернокислые растворы, мигрируя вниз, реагируют с первичными сульфидами:
MeS + H2SO4 → MeSO4 + H2S.
Большое значение приобретают и различные микрогальванические пары, т. е. электрохимические явления, изученные Г. Б. Свешниковым, Л. К. Яхонтовой и другими учеными.
Горизонты с сероводородной средой известны также в низах коры выветривания углеродистых пиритизированных сланцев и других пород с сульфидами. Ю. Е. Сает и др. описали в коре выветривания медноколчеданных месторождений Мугоджар нижние сероголубые восстановленные глинистые горизонты с пиритом (верхняя часть коры, красная с гидроокислами железа). Л. Д. Кудерина описала аналогичные явления и зоне окисления месторождения Жайрем в Центральном Казахстане.
Водоносные горизонты
В конце 20-х годов Вернадский приступил к грандиозной работе — составлению монографии по минералогии и геохимии природных вод. Ученый считал воду особым минералом, выделил сотни ее видов. Впервые с единых геохимических позиций были рассмотрены такие различные образования, как льды Арктики, воды черных тропических рек, глубокие подземные рассолы и многие другие воды.
В 1933—1936 гг. были опубликованы три выпуска «Истории природных вод». Вернадский писал, что «История природных вод» на первой части должна прекратиться, так как «годы автора вряд ли дадут ему возможность закончить этот труд». Но и то, что было сделано, оказало огромное влияние на научную мысль, в том числе на развитие науки о подземных водах — гидрогеологии. Постепенно в ней стало оформляться особое направление — гидрогеохимия (геохимия подземных вод).
Зарождение гидрогеохимии А. М. Овчинников датирует 1929 г., когда Вернадский в своем докладе Российскому минералогическому обществу сформулировал задачи нового направления. Термин же «гидрогеохимия» появился лишь через 10 лет, в 1938 г., в трудах коллектива гидрогеологов Центрального института курортологии в Москве. Широкое развитие гидрогеохимических исследований началось в СССР в 50-х годах. Как и другие современные отрасли знания, гидрогеохимия относится к числу «гибридных наук»: она возникла в результате взаимодействия наук, синтеза многих идей и методов. В качестве второго главного ее источника следует назвать советскую гидрогеологическую школу, развитую Ф. П. Саваренским, Г. Н. Каменским, В. А. Приклонским, А. И. Силиным-Бекчуриным и другими выдающимися учеными. Особенно большую роль сыграли представления о зависимости состава подземных вод от их динамики. В исключительно ясной форме эти идеи разработал талантливый гидрогеолог Н. К. Игнатович (1899—1950).
Вертикальная зональность подземных вод. В верхней части земной коры Игнатович выделил три основные зоны по интенсивности водообмена. Самая верхняя — зона интенсивного водообмена, где подземный сток тесно связан с поверхностным, подземные воды дренируются реками, движутся сравнительно быстро, водообмен осуществляется за десятки, сотни, тысячи и сотни тысяч лет. В районах с влажным климатом воды маломинерализованпые (пресные). Мощность этой зоны обычно не превышает 500 м, но в горных районах может быть и более 1000 м. В геологическом смысле это молодые воды, образующиеся за счет инфильтрации атмосферных осадков, часто содержащие растворенный кислород (окислительные). В засушливых районах возможна испарительная концентрация вод в депрессиях рельефа и их концентрация вплоть до рассолов (например, в солончаках).
Глубже расположена зона замедленного водообмена, где водообмен осуществляется приблизительно за 1 млн. лет. Воды здесь более минерализованные, часто нагретые, они длительное время соприкасаются с горными породами и выщелачивают из них растворимые компоненты. Воды не содержат свободного кислорода, характеризуются восстановительными условиями, обогащены сероводородом, метаном, углекислым газом.
Самая глубокая — зона весьма замедленного водообмена, где водообмен осуществляется лишь в масштабе целых геологических периодов, т. е. за миллионы и сотни миллионов лет. Часто это глубинные (местами более 3 км) горячие воды артезианских бассейнов, древние, сильно-минерализованные (вплоть до рассолов) с восстановительной средой.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Биокосные системы Земли"
Книги похожие на "Биокосные системы Земли" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Перельман - Биокосные системы Земли"
Отзывы читателей о книге "Биокосные системы Земли", комментарии и мнения людей о произведении.










