» » » » Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий


Авторские права

Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий

Здесь можно купить и скачать " Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Наука, год 1983. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
 Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий
Рейтинг:
Название:
Популярная библиотека химических элементов. Книга первая. Водород — палладий
Издательство:
неизвестно
Жанр:
Год:
1983
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Популярная библиотека химических элементов. Книга первая. Водород — палладий"

Описание и краткое содержание "Популярная библиотека химических элементов. Книга первая. Водород — палладий" читать бесплатно онлайн.



«Популярная библиотека химических элементовсодержит сведения обо всех элементахизвестных человечеству. Сегодня их 107причем некоторые получены искусственно.

Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такиекак медь, железо,известны с доисторических времен. Возраст других измеряется только векаминесмотря на то, что ими, еще не открытыми, человечество пользовалось незапамятные времена. Достаточно вспомнить о кислороде, открытом лить в веке. Третьи открыты лет назадно лишь в наше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтезатехнеций, плутоний, менделевийкурчатовий… Словомсколько элементов, столько индивидуальностей, столько историйстолько неповторимых сочетаний свойств.

В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторуюобо всех остальных.






Однако если собрать воедино весь 10Be, находящийся в атмосфере, водных бассейнах, почве и на дне океана, то получится довольно внушительная цифра — около 800 т.

Изотоп 10Be (период полураспада 2,5∙106 лет) представляет исключительный интерес для геохимии и ядерной метеорологии. Рождаясь в атмосфере, на высоте примерно 25 км, атомы 10Be вместе с осадками попадают в океан и оседают на дне. Зная концентрацию 10Be во взятой со дна пробе и период полураспада этого изотопа, можно вычислить возраст любого слоя на дне океана.

Бериллий-10 аккумулируется также в морских илах и ископаемых костях (кости сорбируют бериллий из природных вод). В связи с этим возникло предположение о возможности определения возраста органических остатков по 10Be. Дело в том, что довольно широко освоенный радиоуглеродный метод непригоден для определения возраста образцов в интервале 105-108 лет (из-за большой разницы между периодами полураспада 14C и долгоживущих изотопов 40K, 82Rb, 232Th, 235U и 238U). Изотоп 10Be как раз «заполняет» этот разрыв.

Жизнь другого радиоизотопа — бериллия-7 — значительно короче: период его полураспада равен всего 53 дням. Поэтому не удивительно, что количество его на Земле измеряется граммами. Изотоп 7Be может быть получен и в циклотроне, но это дорого обойдется. Поэтому широкого применения этот изотоп не получил. Его используют иногда для прогнозирования погоды. Он выполняет роль своеобразной «метки» воздушных слоев: наблюдая изменение концентрации 7Be, можно определить промежуток времени от начала движения воздушных масс. Еще реже применяют 7Be в других исследованиях: химики — в качестве радиоактивного индикатора, биологи — для изучения возможностей борьбы с токсичностью самого бериллия.


Бериллий с точки зрения биолога и медика

Бериллий обнаружен в растениях, произрастающих на бериллийсодержащих почвах, а также в тканях и костях животных. Но если для растения бериллий безвреден, то у животных он вызывает так называемый бериллиевый рахит. Повышенное содержание солей бериллия в пище способствует образованию в организме растворимого фосфата бериллия. Постоянно «похищая» фосфаты, бериллий тем самым способствует ослаблению костной ткани — это и есть причина болезни.

Многие соединения бериллия ядовиты. Они могут стать причиной воспалительных процессов на коже и бериллиоза — специфического заболевания, вызываемого вдыханием бериллия и его соединений. При кратковременном вдыхании больших концентраций растворимых соединении бериллия возникает острый бериллиоз, представляющий собой раздражение дыхательных путей, иногда сопровождающееся отеком легких и удушьем. Есть и хроническая разновидность бериллиоза. Для нее характерны менее резкие симптомы, но большие нарушения в функциях всего организма.

Допустимые пределы содержания бериллия в воздухе очень малы — всего 0,001 мг/м3. Это значительно меньше допустимых норм для большинства металлов, даже таких токсичных, как свинец.

Для лечения бериллиоза применяют чаще всего химические соединения, связывающие ионы бериллия и способствующие их выведению из организма.


Три «но» бериллия

Эта глава не означает, что все предыдущее — только «теория». Но, к сожалению, факторы, ограничивающие применение бериллия, вполне реальны, и не учитывать их нельзя.

Это прежде всего хрупкость металла. Она намного усложняет процесс его механической обработки, затрудняет получение больших листов бериллия и сложных профилей, необходимых в тех или иных конструкциях. Предпринимаются упорные попытки устранить этот недостаток. Но, несмотря на некоторые успехи (изготовление металла высокой чистоты, различные технологические усовершенствования), получение пластичного бериллия продолжает оставаться трудной проблемой.

Второе — токсичность бериллия.

Тщательный контроль за чистотой воздуха, особые системы вентиляции, возможно большая автоматизация производства — все это позволяет успешно бороться с токсичностью элемента № 4 и его соединений.

И наконец, третье и очень важное «но» бериллия — его высокая стоимость. Цена 1 кг бериллия в США сейчас более 300 долларов, т. е. бериллий в несколько раз дороже титана.

Однако рост потребления всегда приводит к технологическим усовершенствованиям, которые в свою очередь способствуют уменьшению издержек производства и цены. В будущем спрос на бериллий возрастет еще больше: ведь этот металл человечество начало применять всего несколько десятилетий. И, конечно, достоинства элемента № 4 возьмут верх над его недостатками.


ИЗ ДОКУМЕНТОВ ПРОШЛОГО. Восьмидесятые годы прошлого века — время оживленных научных споров об атомном весе бериллия.

Д. И. Менделеев писал по этому поводу:

«Недоразумение длилось несколько лет. Не раз мне приходилось слышать о том, что вопрос об атомном весе бериллия грозит поколебать общность периодического закона, может потребовать глубоких в нем преобразований. В научном разноречии, касающемся бериллия, приняли участие многие силы, конечно, потому именно, что дело шло о предмете более многозначительном, чем атомность сравнительно редкого элемента; периодический закон разъяснялся в этих разноречиях, и взаимная связь элементов разных групп стала более очевидной, чем было когда-либо».

Долгое время главными противниками двухвалентности бериллия были шведские химики профессора Л. Ф. Нильсон и О. Петерсон. В 1878 г. они опубликовали статью «О получении и валентности бериллия», в конце которой были такие слова: «…наше мнение об истинном атомном весе и химической природе этого металла противоречит так называемому периодическому закону, который Менделеев предначертал для всех элементов, а именно не только потому, что при Ве=13,8 металл этот едва ли может быть помещен в менделеевскую систему, но и потому, что тогда элемент с атомным весом 9,2, как это требует периодический закон, в системе отсутствовал бы и, по-видимому, еще должен быть открыт».

В защиту периодического закона выступил чешский химик Богуслав Браунер, считавший, что известный закон Дюлонга и Пти, которым пользовались шведские химики, имеет некоторые отступления в области малых атомных весов, к которой собственно и относится бериллий. Кроме того, Браунер советовал. Нильсону и Петерсону определить плотность паров хлористого бериллия, считая, что количественное определение этой характеристики поможет точно установить принадлежность элемента к той или иной группе периодической системы. Когда шведские химики повторили свои опыты и проделали то, что советовал им Браунер, они убедились в правоте Менделеева. В статье, отражавшей результаты этой работы, Нильсон в Петерсон написали: «мы должны отказаться от ранее защищавшегося нами мнения о том, что бериллий трехвалентный элемент… Одновременно мы признаем правильность периодического закона и в этом важном случае».

В 1884 г. Нильсон писал Менделееву: «…не могу не выразить Вам моего сердечного поздравления по поводу того, что и в этом случае, как и во многих других, система оправдала себя».

Позднее в одном из изданий «Основ химии» Д. И. Менделеев отметил, что «Нильсон и Петерсон — одни из главных защитников трехатомности бериллия… доставили опытные доказательства в пользу двухатомности бериллия и, громко высказав это, показали, что в науке истина, даже при разноречиях, одинаково дорога всем, хотя бы сперва и отрицалась теми, кто ее утвердил».

ДРАГОЦЕННЫЕ БЕРИЛЛЫ. Основной минерал бериллия — берилл относится, как известно, к полудрагоценным камням. Но когда говорят о четырех его разновидностях — изумруде, аквамарине, воробьевите и гелиодоре, то приставку «полу» отбрасывают. Изумруды, особенно весом больше 5 каратов, ценятся не меньше бриллиантов.

Чем отличаются эти камни от обычного берилла? Ведь формула их та же — Al2Be3(Si6O18). Но эта формула не учитывает примесей, которые, собственно, и превращают полудрагоценные камни в драгоценные. Аквамарин окрашен ионами двухвалентного железа, в изумруде (он же смарагд) кроме Fe2+ есть незначительная примесь окиси хрома. Розовый цвет воробьевита объясняется примесью соединений цезия, рубидия и двухвалентного марганца, а золотисто-желтый гелиодор окрашен ионами трех валентного железа.

ДРАГОЦЕННЫЙ МЕТАЛЛ ИЗ ПОЛУДРАГОЦЕННОГО КАМНЯ. Высокая стоимость бериллия объясняется не только ограниченностью сырьевых ресурсов, но и сложностями технологии получения чистого металла. Основной метод производства бериллия — восстановление его фторида металлическим магнием. Фторид получают из гидроокиси, а гидроокись из бериллового концентрата. Уже первый прогон этой технологической лестницы состоит из нескольких ступеней: концентрат подвергают термообработке, измельчению, затем на него последовательно действуют серной кислотой, водой, растворами аммиака и едкого натра, специальными комплексообразователями.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Популярная библиотека химических элементов. Книга первая. Водород — палладий"

Книги похожие на "Популярная библиотека химических элементов. Книга первая. Водород — палладий" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Коллектив авторов

Коллектив авторов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий"

Отзывы читателей о книге "Популярная библиотека химических элементов. Книга первая. Водород — палладий", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.