» » » Михаил Никитин - Происхождение жизни. От туманности до клетки


Авторские права

Михаил Никитин - Происхождение жизни. От туманности до клетки

Здесь можно купить и скачать "Михаил Никитин - Происхождение жизни. От туманности до клетки" в формате fb2, epub, txt, doc, pdf. Жанр: Химия, издательство ЛитагентАльпина6bdeff1e-120c-11e2-86b3-b737ee03444a, год 2016. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Михаил Никитин - Происхождение жизни. От туманности до клетки
Рейтинг:
Название:
Происхождение жизни. От туманности до клетки
Издательство:
неизвестно
Жанр:
Год:
2016
ISBN:
978-5-9614-4350-9
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Происхождение жизни. От туманности до клетки"

Описание и краткое содержание "Происхождение жизни. От туманности до клетки" читать бесплатно онлайн.



Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.






Планеты Кеплер-11 из-за близости к звезде весьма горячи, поэтому у них очень толстые атмосферы с высокими облаками. Судя по массе и видимому диаметру, три планеты (Кеплер-11 d, e, f) могут иметь состав, близкий к нашему Урану и Нептуну, а две ближайшие к звезде (b и c) – меньше водорода и гелия. Мы пока не знаем, из чего на самом деле состоят атмосферы этих планет и тем более сами планеты, но очевидно, что они богаты легкими веществами (водород, гелий, вода) (Lissauer et al, 2011).

Если мы знаем, что «горячие Юпитеры» могут возникать путем миграции планеты-гиганта, захватывающей газ, то происхождение планет системы Кеплер-11 неизвестно. Они слишком близки друг к другу, и небольшое изменение орбиты одной из планет легко может нарушить стабильность всей системы. Кроме того, они слишком малы, чтобы мигрировать за счет захвата газа.

Другая многопланетная система, Кеплер-90, более похожа на Солнечную (рис. 2.5). Звезда Кеплер-90 достаточно близка к нашему Солнцу по массе, светимости и возрасту. Вокруг нее обращаются как минимум семь планет, среди которых есть газовые гиганты снаружи и планеты земного типа вблизи звезды. Однако все их орбиты гораздо меньше, чем в Солнечной системе. Орбиты двух газовых гигантов почти совпадают с орбитами Земли и Венеры у нас. Две планеты земного типа (соответственно в 1,7 и 2,2 раза тяжелее Земли) очень близки к звезде и делают оборот вокруг нее всего за 7 и 8,7 суток, т. е. находятся в орбитальном резонансе 5:4. Температура их поверхности должна быть выше 1000 °C. Наконец, между скальными и газовыми планетами, примерно в районе орбиты Меркурия, обращаются три «мини-Нептуна» с массами 3, 8 и 11 масс Земли. Их орбиты близки к друг другу, и между ними существует орбитальный резонанс 4:3:2. Жизнь, похожая на земную, в этой системе может быть только на спутниках планет-гигантов.

Хотя удаленные от звезд экзопланеты наблюдать очень сложно, все же иногда их находят. Например, в системе HR 8799 при помощи инфракрасного телескопа KeckII удалось обнаружить четыре планеты-гиганта, которые по своим расстояниям от звезды напоминают наши Юпитер, Сатурн, Уран и Нептун, только все орбиты пропорционально увеличены примерно в 2 раза. Массы этих планет очень велики и оцениваются в пределах 2–10 масс Юпитера. Снаружи и внутри от этих планет вокруг звезды обращаются пылевые кольца, соответствующие поясу астероидов и поясу Койпера. Система HR 8799 очень молода, ей около 100 млн лет, и планеты, несмотря на удаленность от звезды, очень горячи (до 1000 °C) за счет гравитационной энергии, выделившейся при их образовании. Поэтому в инфракрасном диапазоне они хорошо заметны даже рядом со звездой (рис. 2.6).

Звезда HR 8799 вдвое тяжелее Солнца, поэтому могла обладать более протяженным и массивным протопланетным диском. Расположение планет в ней напоминает современную Солнечную систему, прошедшую через период орбитальной нестабильности, а не древние сближенные орбиты. Период нестабильности в Солнечной системе случился через 600 млн лет от начала, но в системе HR 8977 из-за большей массы звезды и планет аналогичная нестабильность могла начаться и пройти гораздо быстрее – в пределах 100 млн лет.

К сожалению, для прямого наблюдения планет возможностей существующих приборов почти всегда недостаточно. Астрономы с нетерпением ждут начала работы нового орбитального телескопа имени Джеймса Уэбба в 2019 году. Он намного превзойдет «Хаббл» и наземные телескопы по разрешающей способности и позволит прямо наблюдать аналоги Юпитера и Сатурна у звезд в пределах 100 световых лет от Солнца.

Астрономы попытались статистически оценить уникальность Солнечной системы (Martin, Livio, 2015). Сравнивая наши планеты с чужими, они убедились, что по массе и плотности (и, видимо, по химическому составу) Земля с Венерой, Юпитер, Сатурн и Уран с Нептуном имеют близкие аналоги у других звезд. Аналоги Марса и Меркурия просто невидимы современными приборами. С другой стороны, в Солнечной системе нет суперземель и мини-Нептунов – планет с массой 1–10 масс Земли. Судя по известным экзопланетным системам, 50–80 % всех звезд могут иметь суперземлю или мини-Нептун, но наше Солнце здесь является исключением. По параметрам орбит все планеты Солнечной системы достаточно типичны и имеют много близких аналогов. Но в Солнечной системе нет очень близких к звезде горячих планет. Меркурий делает оборот вокруг Солнца за 88 суток, а во многих экзопланетных системах есть планеты с периодами обращения менее 20 суток. Конечно, такие близкие к звезде планеты проще всего обнаружить современными методами, но даже с поправкой на это получается, что они есть в 90 % экзопланетных систем (рис. 2.7).

В целом понятно, что в Солнечной системе нет ничего сверхуникального. Она может быть необычна тем, что в ней отсутствуют такие распространенные в Галактике разновидности планет, как суперземли и мини-Нептуны, а также близкие горячие планеты. Но в любом случае Солнечная система, скорее, «одна на тысячу», чем «одна на миллиард».

Глава 3

Геологическое строение Земли, Марса и Венеры

Чтобы обсуждать происхождение и эволюцию Земли как планеты, стоит напомнить ее современное устройство. Я постараюсь сделать это кратко, а желающим знать подробности рекомендую обратиться к замечательным книгам «Удивительная палеонтология: История Земли и жизни на ней» (М., 2007) К. Еськова и «Краткая история планеты Земля. Горы, животные, огонь и лед» (СПб., 2001) Дж. Макдугалла.

В основе современного представления об устройстве Земли лежит теория дрейфа континентов. Согласно ей земная кора, покрывающая мантию, состоит из отдельных плит, которые движутся относительно друг друга. Кора делится на два типа: материковую и океаническую. Они отличаются толщиной (у материковой она составляет в среднем 30 км, у океанической – 7–8 км), составом и историей. При столкновении плит кора сминается в складки, которые образуют горные системы.

Когда теория дрейфа континентов была впервые предложена Альфредом Вегенером в 1912 году, она получила некоторое признание за то, что объясняла давно известное сходство береговых линий континентов по обе стороны Атлантики, общие ископаемые фауны и следы древнего оледенения на всех материках Южного полушария. Однако в те времена не удалось найти силу, которая бы двигала материки, и теорию Вегенера позабыли. Настоящее признание она получила в 1960-е годы, когда было изучено дно океанов и обнаружены срединно-океанические хребты. Эти крупнейшие горные системы общей длиной около 70 000 км (на суше нет ничего даже близко сопоставимого) проходят примерно по средним линиям Атлантического, Южного (окружающего Антарктиду) и Индийского океанов. В Тихом океане хребет сильно смещен к берегам Америки. Вдоль каждого хребта по его середине проходит узкое ущелье – рифт. В районе рифтов постоянно выделяется подземное тепло, вызывающее конвекцию океанской воды, бьют горячие источники и происходят мелкофокусные землетрясения. Когда удалось измерить (радиоизотопным методом и по ископаемым остаткам) возраст океанской коры, оказалось, что во всех океанах он меняется от практически современного у рифта до 100–200 млн лет у берегов. Ни в одном океане нет коры древнее 200 млн лет. Таким образом, океанская кора похожа на полотно, которое ткется в рифтовой зоне срединно-океанического хребта, расходится в стороны и ныряет в мантию под материки в глубоководных желобах (рис. 3.1).

Схема дрейфа плит земной коры

В наше время погружение океанской коры идет в основном под берегами Тихого океана, тогда как Атлантика и Индийский океан расширяются. Скорости этих движений коры измеряются сантиметрами в год. Причиной движения плит являются течения в мантии. Источник энергии для этих течений – сила тяжести: дифференциация Земли на железное ядро и силикатную мантию еще не завершена. Железо продолжает тонуть, а силикаты по-прежнему всплывают на поверхность. За счет этого в мантии происходят конвективные течения, как в кастрюле с супом на плите. В этой аналогии плиты земной коры подобны скоплениям пенки на поверхности супа (рис. 3.2).

Пенка в кастрюле скапливается там, где происходит опускание жидкости, – около стенок. В мантии Земли над областями опускания скапливаются материки, а над зоной поднятия вырастают срединно-океанические хребты. В современном состоянии Земли наиболее активная зона поднятия почти полностью окружает цепочку из Антарктиды и обеих Америк. В другие эпохи все материки собирались в единую массу (Пангея, Мегагея, Родиния), опускание мантии происходило под серединой сверхматерика, поднятие – под серединой единого океана.

В то время как океанская кора постоянно обновляется и ее возраст не превышает 200 млн лет, материковая кора накапливалась миллиарды лет. В составе современных материков есть крупные блоки возрастом до 3–3,5 млрд лет. Химический состав двух типов коры также различен: океанская кора сложена базальтами (затвердевшей лавой с 50–55 % SiO2 и высоким содержанием оксидов магния и железа), а в континентальной коре преобладают граниты – тоже изверженные породы, но содержание SiO2 в них достигает 72 %, а из металлов преобладают алюминий, натрий и кальций. Граниты менее плотны, чем базальты, благодаря чему континентальная кора плавает на поверхности жидкой базальтовой магмы и при столкновениях с океанской корой обычно оказывается сверху.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Происхождение жизни. От туманности до клетки"

Книги похожие на "Происхождение жизни. От туманности до клетки" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Михаил Никитин

Михаил Никитин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Михаил Никитин - Происхождение жизни. От туманности до клетки"

Отзывы читателей о книге "Происхождение жизни. От туманности до клетки", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.