» » » » БСЭ - Большая Советская энциклопедия (ВА)


Авторские права

БСЭ - Большая Советская энциклопедия (ВА)

Здесь можно скачать бесплатно " БСЭ - Большая Советская энциклопедия (ВА)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
 БСЭ - Большая Советская энциклопедия (ВА)
Рейтинг:
Название:
Большая Советская энциклопедия (ВА)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская энциклопедия (ВА)"

Описание и краткое содержание "Большая Советская энциклопедия (ВА)" читать бесплатно онлайн.








 

называемому уравнением Эйлера.

  Это — дифференциальное уравнение 2-го порядка относительно функции x (t ). Необходимое условие dJ = 0 может быть применено в ряде случаев для эффективного отыскания решения вариационной задачи, поскольку функция x (t ) необходимо должна быть решением краевой задачи x (to ) = xo , x (T ) = xT для уравнения (4). Если найдено это решение и оно единственно, то найдено тем самым и решение исходной вариационной задачи. Если краевая задача допускает несколько решений, то достаточно вычислить значение функционала для каждого из решений краевой задачи и выбрать из них то, которому отвечает наименьшее значение J (x ). Однако указанный путь обладает одним существенным недостатком: не существует универсальных способов решения краевых задач для обыкновенных (нелинейных) дифференциальных уравнений.

  Уже во 2-й половине 18 в. круг задач, изучаемых В. и., значительно расширился. Прежде всего основные результаты, относящиеся к простейшей задаче В. и., были перенесены на общий случай интегральных функционалов вида

 

где x (t ) вектор-функция произвольной размерности, и на функционалы ещё более общего вида.

  Условный экстремум. Задача Лагранжа. В конце 18 в. был сформулирован ряд задач на условный экстремум. Этим термином принято называть задачи отыскания функции x (t ), доставляющей экстремум функционалу J (x ) при каких-либо дополнительных условиях, кроме условий на концах интервала (t0 , T). Простейшей задачей подобного вида является класс так называемых изопериметрических задач . Своим названием этот класс задач обязан следующей: среди всех замкнутых кривых данной длины найти ту, которая ограничивает максимальную площадь.

  Значительно более сложной задачей является та, в которой ограничения носят характер дифференциальных уравнений. Эту задачу называют задачей Лагранжа; особое значение она приобрела в середине 20 в. в связи с созданием теории оптимального управления . Поэтому её формулировка даётся ниже на языке этой теории, возникшем после работ Л. С. Понтрягина и его учеников.

  Пусть x (t) и u (t) — вектор-функции размерностей n и m соответственно, причём функция x (t ), которую называют фазовым вектором, при t = to и t = T удовлетворяет граничным условиям:

  x (t0 ) Î e0 , x (T) Î eT      (5)

  где e0 и eT — некоторые множества. Простейшим примером условий типа (5) являются условия (2). Функция x (t ) и функция u (t ), которую называют управлением, связаны условием

  dx/dt = f (x, u, t),     (6)

  где f — дифференцируемая вектор-функция своих аргументов. Рассматриваемая задача состоит в следующем: определить функции x (t ) и u (t ), доставляющие экстремум функционалу

 

Заметим, что и простейшая задача В. и. и изопериметрическая задача являются частным случаем задачи Лагранжа.

  Задача Лагранжа имеет огромное прикладное значение. Пусть, например, уравнение (6) описывает движение какого-либо динамического объекта, например космического корабля. Управление u — это вектор тяги его двигателя. Множества e0 и eT — это две орбиты разных радиусов. Функционал (7) описывает расход горючего на выполнение маневра. Следовательно, задачу Лагранжа, применительно к данной ситуации, можно сформулировать следующим образом: определить закон изменения тяги двигателя космического аппарата, совершающего переход с орбиты e0 на орбиту eT за заданное время так, чтобы расход топлива на этот маневр был минимальным.

  Важную роль в теории подобных задач играет функция Гамильтона

  H (x, y, u) = (f, y) - F.

  Здесь y — вектор, называется множителем Лагранжа (или импульсом), (f, y) означает скалярное произведение векторов f и y . Необходимое условие в задаче Лагранжа формулируется следующим образом: для того чтобы функции  и  были решением задачи Лагранжа, необходимо, чтобы  была стационарной точкой функции Гамильтона Н (х, y, u), то есть, чтобы при

 

  было ¶H/u = 0, где y — не равное тождественно нулю решение уравнения

  ¶y/t = —¶H/¶x = j(x, y, u, t).      (8)

  Эта теорема имеет важное прикладное значение, так как она открывает известные возможности для фактического нахождения векторов x (t ) и u (t ).

  Развитие В. и. в 19 в. Основные усилия математиков в 19 в. были направлены на исследование условий, необходимых или достаточных для того, чтобы функция x (t ) реализовала экстремум функционала J (x ). уравнение Эйлера было первым из таких условий; оно аналогично необходимому условию

 

  которое устанавливается в теории функций конечного числа переменных. Однако в этой теории известны ещё и другие условия. Например, для того, чтобы функция f (x ) имела в точке  минимум, необходимо, чтобы в этой точке было

 

  каков бы ни был произвольный вектор h. Естественно поставить вопрос: в какой степени эти результаты переносятся на случай функционалов? Для того чтобы представить себе сложность, которая здесь возникает, заметим, что функция  может реализовать минимум среди функций одного класса и не давать минимум среди функций другого класса и т.д.

  Подобные вопросы послужили источником разнообразных и глубоких исследований А. Лежандра , К. Якоби , М. В. Остроградского , У. Гамильтона , К. Вейерштрасса и многих других. Эти исследования не только обогатили математический анализ, но и сыграли большую роль в формировании идей аналитической механики и оказали серьезное влияние на развитие разнообразных отделов теоретической физики.

  Развитие В. и. в 20 в. В 20 в. возник целый ряд новых направлений В. и., связанных с интенсивным развитием техники, смежных вопросов математики и вычислительной техники. Одно из основных направлений развития В. и. в 20 в. — рассмотрение неклассических задач В. и., приведшее к открытию принципа максимума Л. С. Понтрягина.

  Рассмотрим снова задачу Лагранжа: определить минимум функционала

 

  при условии

 

  фазовый вектор x (t ) должен удовлетворять ещё некоторым граничным условиям.

  В своей классической постановке условия задачи Лагранжа не предусматривают никаких ограничений на управление u (t ). Выше (см. раздел Условный экстремум. Задача Лагранжа) подчёркивалась тесная связь между задачей Лагранжа и задачей управления. В рассмотренном там примере u (t ) тяга ракетного двигателя. Эта величина подчинена ограничениям: тяга двигателя не может превосходить некоторой величины, и угол поворота вектора тяги также ограничен. В данном конкретном примере компонента ui (i = 1,2,3) вектора тяги двигателя подчинена ограничениям

 

  где а- i и a+ i — некоторые заданные числа. Подобных примеров можно привести много.

  Таким образом, в технике появилось много задач, которые сводятся к задаче Лагранжа, но при дополнительных ограничениях типа (10), записываемых в форме u Î Gu , где Gu — некоторое множество, которое, в частности, может быть замкнутым. Такие задачи получили название задач оптимального управления. В задаче Лагранжа можно исключить управление u (t ) при помощи уравнения (8) и получить систему уравнений, которая содержит только фазовую переменную х и множитель Лагранжа j . Для теории оптимального управления должен был быть разработан специальный аппарат. Эти исследования привели к открытию принципа максимума Л. С. Понтрягина. Он может быть сформулирован в форме следующей теоремы: для того чтобы функции  и  были решением задачи оптимального управления чтобы они доставляли минимум функционалу (9)], необходимо, чтобы u (t ) доставляла максимум функции Гамильтона


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская энциклопедия (ВА)"

Книги похожие на "Большая Советская энциклопедия (ВА)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ

БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " БСЭ - Большая Советская энциклопедия (ВА)"

Отзывы читателей о книге "Большая Советская энциклопедия (ВА)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.