» » » » Андрей Кашкаров - Устройства импульсного электропитания для альтернативных энергоисточников


Авторские права

Андрей Кашкаров - Устройства импульсного электропитания для альтернативных энергоисточников

Здесь можно купить и скачать "Андрей Кашкаров - Устройства импульсного электропитания для альтернативных энергоисточников" в формате fb2, epub, txt, doc, pdf. Жанр: Хобби и ремесла, издательство ДМК Пресс, год 2017. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Андрей Кашкаров - Устройства импульсного электропитания для альтернативных энергоисточников
Рейтинг:
Название:
Устройства импульсного электропитания для альтернативных энергоисточников
Издательство:
неизвестно
Год:
2017
ISBN:
978-5-97060-452-6
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Устройства импульсного электропитания для альтернативных энергоисточников"

Описание и краткое содержание "Устройства импульсного электропитания для альтернативных энергоисточников" читать бесплатно онлайн.



В книге рассматриваются современные принципы разработки импульсных преобразователей напряжения и подключения их в системы автономного энергопитания потребителей.

Практическое пособие поможет мастеру-умельцу разобраться в схемотехнике отдельных узлов импульсных источников питания. А знание конструктивных особенностей преобразователей напряжения даст возможность монтировать системы энергопитания, состоящие из современных автономных и нетрадиционных источников питания, таких как ветрогенераторы и солнечные батареи, а также осуществлять качественный ремонт этих систем.

Книга содержит полезные сведения по импортозамещению популярных радиоэлементов, используемых в мощных импульсных преобразователях напряжения.

Издание для широкого круга читателей.






Если источник питания работает в режиме перегрузки, то постепенно напряжение на конденсаторе достигнет уровня, при котором на базе Q1 появится открывающий положительный потенциал.

Нарастающее напряжение на базе Q1 плавно открывает транзистор, и напряжение на его коллекторе понижается. В коллекторной цепи Ql включен делитель на резисторах R2 и R3, средняя точка которого подсоединена к базе Q2. Понижение напряжения на коллекторе Q2 через R3 передается на базу Q2, открывая его. Собственное сопротивление транзистора Q2 уменьшается, положительное напряжение на его коллекторе начинает расти.

В том случае, если источник перегрузки вторичной цепи не устранен, рост напряжения на базе Q2 приведет к полному его открыванию и переключению транзистора в насыщение. Напряжение на аноде диода D4 будет равно опорному, имеющему значение +5 В, за вычетом падения на открытом транзисторе Q2. Через открытый диод D4 напряжение опорного источника поступает на вывод TL494/4, где его уровень будет составлять примерно +3,9 В. Это значение превышает максимальный уровень пилообразного напряжения, поэтому формирование импульсного сигнала на выходах ШИМ-преобразователя будет блокировано. Импульсы возбуждения не будут подаваться на усилитель мощности, передача энергии через импульсный силовой трансформатор во вторичную цепь прекратится.

Постепенно произойдет спад всех вторичных напряжений до нулевого уровня.

Возобновление работы преобразователя возможно только после переключения сетевого выключателя и нормальной генерации импульса начального питания ШИМ-преобразователя.

Аналогичное воздействие на транзисторные каскады схемы защиты будет вызвано резким падением уровня любого из каналов с отрицательными номиналами напряжений, подключенных к схеме через диод D3 и резистор R7. Принцип действия узла защиты от КЗ по слаботочным каналам основан на функционировании вентильной схемы, основным элементом которой является диод D2. Диод включен между датчиками уровней напряжений отрицательных уровней и базой транзистора Q1.

Катоды диодов D2 и D5 соединены по схеме «ИЛИ». Переключение транзисторных ключей на Q1 и Q2 будет выполняться, если в точке соединения диодов появится потенциал, достаточный для открывания транзистора Q1. При нормальной работе основных каналов, когда ширина импульсов управления укладывается в допуск, такое напряжение может быть подано только через диод D2.

Уровень напряжения на аноде D2 определяется соотношением сопротивлений резисторов R6 и R5. В точке соединения резистора R7 и диода D3 напряжение имеет значение -5,8 В. Резистор R5 одним выводом подключен к источнику опорного напряжения микросхемы TL494 с номинальным уровнем +5 В, вторым — к аноду D2.

Для того чтобы на катод диода D2 не поступало положительное напряжение, потенциал на аноде D2 должен быть нулевым или отрицательным. Для большей чувствительности схемы защиты потенциал выбирается именно нулевым.

Для поддержания нулевого уровня на аноде диода D2 у резистора R6 должно быть сопротивление на 15 % больше, чем у R5.

В установившемся режиме, когда все напряжения имеют номинальный уровень, элементы, соединенные с D2, не влияют на состояние ключевой транзисторной схемы.

Если в нагрузочной цепи каналов -5 или -12 В возникает ситуация, при которой происходит значительное падение уровней этих напряжений, осуществляется перераспределение напряжений в делителе из R5 и R6. Отрицательный потенциал, компенсирующий положительное напряжение опорного источника, в точку соединения этих резисторов поступать не будет. На анод D2 будет проходить только положительное напряжение через R5, которым последовательно откроются диод D2, а затем оба транзисторных ключа на Q1 и Q2. Это приведет к появлению напряжения +3,9 В на выводе 4 микросхемы TL494 и вызовет блокировку ШИМ-преобразователя и отключение источника питания.

Диоды D1, D2 и D5 выполняют функции элементов развязки и исключают взаимное влияние формируемых датчиками напряжений, возникающих при различных перегрузках источника питания.

Один из вариантов узла полной защиты источника питания по основным каналам вторичных напряжений представлен на рис. 1.9.

Главная особенность данной схемы в том, что из нее полностью исключены элементы, используемые в каскадах защиты слаботочных каналов с отрицательными уровнями напряжений. Узел состоит из датчиков ширины импульсов управления и датчиков повышения уровней напряжений по каналам +5 В и +12 В. Оценка функционирования маломощных каналов может производиться по ширине импульсов. Такое схемотехническое решение может быть использовано в источнике питания, где применена дополнительная стабилизация вторичных каналов отрицательных напряжений.

Интегральные стабилизаторы имеют внутренние схемы ограничения выходного тока в случае возникновения перегрузок.


Рис. 1.9. Вариант узла полной защиты источника питания по основным каналам вторичных напряжений


Внимание, важно!

Включение защиты интегрального стабилизатора может быть вызвано также перегревом корпуса стабилизатора.

При получении сигнала об отклонении работы преобразователя от номинального режима схема защиты вырабатывает сигнал положительного уровня, который подается на вывод 4 микросхемы TL494. Остальные внутренние элементы ШИМ-преобразователя для его блокировки не используются. Формирование сигнала о нарушении рабочего режима производится двухкаскадным усилителем на транзисторах Q1 и Q2. В исходном состоянии оба транзистора закрыты.

Напряжение на выводе 4 схемы TL494 задается соотношением сопротивлений резистивного делителя, состоящего из RIO и R11. Сопротивление резистора RIO значительно больше, чем у R11, поэтому в установившемся режиме, в отсутствие перегрузки, напряжение на TL494/4 близко к потенциалу общего провода.

В качестве датчика ширины импульсов управления используются трансформатор Т1 и элементы R3, VD4 и С4. Первичная обмотка трансформатора Т1 включена в диагональ полумостового усилителя мощности последовательно с первичной обмоткой силового импульсного трансформатора Т2. К вторичной обмотке трансформатора Т1 подключена выпрямительная схема с однополупериодным выпрямителем на диоде D4 и емкостным фильтром — конденсатором С4. На конденсаторе С4 выделяется положительное напряжение, пропорциональное длительности импульсов управления.

К резистору R11, кроме сопротивления RIO, присоединена цепь, состоящая из резисторов R4, R6 и диода D6.

Параметры резисторов R4 и R6 подобраны так, чтобы колебания напряжения на конденсаторе С4 не влияли на уровень напряжения на резисторе R11. Анод диода D6 соединен с коллектором транзистора Q4 и через резистор R9 с базой транзистора Q3, являющегося первым ключевым элементом в цепи формирования сигнала блокировки микросхемы TL494.

Прежде чем положительное напряжение на аноде D6 нарастет до уровня его отпирания, оно постепенно откроет транзистор Q3. Коллектор транзистора Q4 соединен через резистор R9 с базой Q3, поэтому изменение напряжения на коллекторе первого транзистора будет сразу передаваться на базу второго. Повышение напряжения в этой точке может быть следствием увеличения нагрузки вторичных цепей и расширением положительных импульсов управления. Постепенное открывание транзистора Q3 сопровождается понижением его коллекторного напряжения и потенциала базы Q4. Передача положительного напряжения происходит через открывающийся транзистор Q4 на базу Q3.

Один транзистор подпитывает базу второго, процесс открывания обоих активных элементов развивается лавинообразно и в итоге приводит к полному открыванию двух транзисторов. Через насыщенный транзистор Q4, диод D4 и резистор R11 протекает ток.

Уровень напряжения, который устанавливается после открывания Q4 на резисторе R11, составляет примерно +3,9 В. Это напряжение превышает амплитуду пилообразного сигнала, действующего на инвертирующем входе внутреннего компаратора «мертвой зоны» DA1, входящего в состав микросхемы TL494. Происходят блокировка пилообразного напряжения на этом компараторе и остановка генерации импульсов на выходах микросхемы ШИМ-преобразователя. Такая последовательность действий осуществляется при увеличении нагрузки источника питания, когда система управления стремится компенсировать падение выходных уровней напряжений, увеличивая интервал активного состояния силовых транзисторов.

Цепи на элементах D1-D3, R1 и R2 выполняют функции детекторов увеличения напряжений основных вторичных каналов выше установленного предела. К выходам каналов с напряжениями +5 и + 12 В подключены пороговые схемы на стабилитронах D1 и D3 соответственно.

В данном случае используется свойство стабилитронов пропускать электрический ток, когда напряжение на них превышает уровень стабилизации. Пока напряжения на стабилитронах будут ниже уровня стабилизации, ток через них протекать не будет, и на положительной обкладке конденсатора С5 потенциал останется близким нулю. Диод D5 закрыт, и воздействия на базу транзистора Q3 не оказывается.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Устройства импульсного электропитания для альтернативных энергоисточников"

Книги похожие на "Устройства импульсного электропитания для альтернативных энергоисточников" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Андрей Кашкаров

Андрей Кашкаров - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Андрей Кашкаров - Устройства импульсного электропитания для альтернативных энергоисточников"

Отзывы читателей о книге "Устройства импульсного электропитания для альтернативных энергоисточников", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.