» » » » Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ


Авторские права

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Здесь можно скачать бесплатно "Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Детская литература, год 1967. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ
Рейтинг:
Название:
ВОЛШЕБНЫЙ ДВУРОГ
Издательство:
Детская литература
Год:
1967
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ВОЛШЕБНЫЙ ДВУРОГ"

Описание и краткое содержание "ВОЛШЕБНЫЙ ДВУРОГ" читать бесплатно онлайн.



«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.

Для среднего и старшего возраста.»

Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.






— Хороша «неделимая» полоска? — спросил Радикс.

— Да, — отвечал Илюша, — уж поистине «неделимая».

— Допустим! — усмехнулся Радикс. — Пусть на этот раз будет по-твоему. Это, конечно, не совсем по Кавальери… Ну, все равно, не будем уж на этот раз придираться!.. Но представь себе, что я хочу ее переместить к абсциссе с пометкой «три». Поскольку эта полоска имеет некоторую конечную толщину, хоть и очень небольшую, она, чтобы уместиться под гиперболой, должна стать короче, а самое главное — толще.

Так вот: во сколько раз она станет толще?

— Поскольку уравнение гиперболы дает для игрека величины, обратные иксу, то ясно, что для абсциссы «один» мы и ординату получаем «один», а для абсциссы «три» мы получаем «одну третью». Опираясь на уравнение гиперболы, я утверждаю, что наша полоска должна, если ее перенести от абсциссы «один» к абсциссе «три», стать толще в три раза, ибо одна треть в три раза меньше единицы. По-моему, иначе быть не может.

Немедленно тончайшая ртутная ниточка сложилась втрое и быстро двинулась направо. Действительно, когда она добралась до абсциссы «три», она стала той длины, какой в этом месте была ордината гиперболы.

— 368 —

— Ясно, — сказал Илюша.

— А далее, — спросил Радикс, — если взять еще одну тончайшую полоску, которая будет стоять рядом с первой, то с ней что будет?

— Я не могу сообразить сразу, как это будет, — отвечал мальчик, — но мне кажется, что если бы мы взяли целый полк тончайших полосок и стали их так перемещать…


Площадь.


— А ведь когда я перемещал целый трапецоид, я именно это и делал! — заметил Радикс.

— Ах да! — спохватился Илюша. — Разумеется. Но я уж буду пока по-своему рассуждать. Итак, ты перемещаешь, скажем, две полоски, они стоят рядом… а стало быть, если первая, сложившись втрое, попадет в абсциссу «три», то ведь и вторая полоска очутится на расстоянии втрое более дальнем, а следовательно, и ей придется сложиться опять-таки втрое. А если это так, то очевидно, что и любая (то есть третья, четвертая, пятая и так далее) полоска тоже должна будет потолстеть при таком перемещении ровно втрое. А тогда и все они вместе, то есть вся площадь трапецоида, тоже должны будут стать втрое толще. И теперь понятно, почему ртуть заняла площадь от «трех» до «шести» по абсциссе.

— Превосходно! — ответствовал Радикс.— Ну, а скажи мне, что будет, если я возьму площадку от икса, равного единице, до икса, равного некоторому n, и перенесу ее опять направо,

— 369 —

так, чтобы ее начало совпадало с иксом, равным какому-то m?

— Придется растянуть всю эту площадку в m раз. И она тогда займет расстояние по абсциссе от m до mn.

— Итак, — продолжал Радикс, — допустим теперь, что я возьму одну площадочку от «один» по абсциссе до «два». И теперь я хочу к ней пристроить сбоку, справа, еще одну точно такую же, то есть удвоить мою площадку. Затем, когда я пристрою вторую, я захочу пристроить третью, снова той же самой величины, то есть утроить первоначальную площадку. Затем пристрою четвертую, пятую и так далее. И все они должны быть равновеликими. Ну, что из этого получится?

Илюша задумался на минутку, а потом сказал так:

— А может, мне снова поможет наше рассуждение со ртутью? Если трапецоид перенести от абсциссы «один» к абсциссе «два», то ясно, что он растянется вдвое. Следовательно, и вторая пристраиваемая площадочка будет длинней по абсциссе, то есть продолжится от абсциссы «два» до абсциссы «четыре». Третья пристраиваемая площадка будет вдвое длиннее второй и займет место до абсциссы «восемь», а четвертая — вдвое длинней третьей, пятая — вдвое против четвертой и так далее. Значит, если начинать всегда от абсциссы «один» и брать первоначальную площадку, кончающуюся у абсциссы «два», то площадка, вдвое большая по площади, кончится у абсциссы «четыре», вчетверо большая по площади — у абсциссы «шестнадцать», впятеро большая — у абсциссы «тридцать два», и так далее, и так далее. Да ведь это выходит геометрическая прогрессия, раз каждая площадка вдвое длинней по абсциссе. Вот в чем дело! Площади в арифметической прогрессии, конечные абсциссы — в геометрической.

— Тебе ясно, какая у гиперболы связь с логарифмами?

— Да, — ответил Илюша.

— Если последовательно рассматривать абсциссы «два», «четыре», «восемь», «шестнадцать», «тридцать два»… идущие в геометрической прогрессии, и вычислять площади соответствующих гиперболических трапеций, начинающихся от абсциссы х = 1, причем единицей для измерения площадей будет площадь первой гиперболической трапеции от х = 1 до х = 2, то эти площади будут идти в арифметической прогрессии, то есть как показатели степеней числа «два», в которые надо возвести это основание, чтобы получить конечные абсциссы «два», «четыре», «восемь», «шестнадцать» и так далее. Поэтому можно сказать, что площадь каждой трапеции, измеренная указанным образом, будет равна логарифму конечной абсциссы при основании «два». Только мне не совсем понятно, почему мы взяли за единицу для измерения площадей именно эту первую гиперболическую площадку? Ведь за единицу для площадей принимают обыкновенно пло-

— 370 —

щадь квадрата со стороной, равной единице длины. Не проще ли и тут взять то же самое?

— Тогда как раз и получишь логарифмы, называемые натуральными, неперовыми, или гиперболическими. Ты можешь повторить все наше рассуждение, но только за начальную площадку придется выбрать гиперболическую трапецию, простирающуюся от абсциссы х = 1 на такое расстояние направо, насколько это нужно, чтобы под гиперболой получилась площадка, равновеликая квадрату со стороной «один». Ты заметишь по чертежу внизу, что такая начальная площадка должна доходить не до абсциссы х = 2, а немного дальше, приблизительно до 2,7. Эта конечная абсцисса обозначается буквой е и называется неперовым числом. Оно не менее знаменито, чем известное тебе число π. Если провести вычисление с большей точностью, то можно обнаружить, что

е = 2,71828 18284 59045 23536 0287471135 26624 99757 54692 80835 55155 05841 72…

Теперь скажи мне: что нужно сделать, если ты захочешь получить вдвое большую площадь, то есть равную двум квадратным единицам?

— Здесь опять все пойдет в геометрической прогрессии, — отвечал Илюша. — Если нужно перенести единичную площадь направо, откладывая ее не от х = 1, а от х = е, то надо все площадочки-неделимые втиснуть в промежуток в е раз более тесный и, следовательно, расширять во столько же раз их основания.

Значит, я дойду до абсциссы е · е = е2. Дальше будет то же самое. Когда я дойду от х = е до абсциссы х = еn, наберется площадь, равная n.

— Значит, — сказал Радикс, — числа, измеряющие величины гиперболических трапеций в обычной единице меры, будут…

— Логарифмами конечных абсцисс при основании е, — отвечал Илюша. — Так это ведь и есть натуральные логарифмы?

— 371 —

— Вот именно. И заметь, что это рассуждение дает нам в руки способ вычисления этих логарифмов для любых положительных чисел, что далеко не так просто сделать, если искать нужный показатель степени. Потому что вычислять с дробными степенями, как ты сам, вероятно, не раз замечал, не так уж весело. Здесь же можно просто отложить абсциссу, равную числу N, логарифм которого тебе нужен, и измерить площадь гиперболической трапеции от х = 1 до х = N.

— Но это уже будет геометрический способ. А потом как же быть с большими числами?

— На миллиметровой бумаге можно добиться довольно большой точности, а для больших чисел придется уже вычислять. Вспомни, как мы вычисляли площадь, ограниченную дугой параболы. Ты ведь и здесь можешь разбить интересующий тебя участок на большое число частей и вычислить (а не измерять непосредственно) сумму площадей соответствующих тоненьких прямоугольников. Это уже можно сделать с любой степенью точности, то есть той, какая понадобится.

Но есть и более удобные способы вычисления логарифмов.

— А какие же логарифмы применяются на самом деле,— спросил Илюша, — натуральные или какие-нибудь другие?

— Натуральные обладают целым рядом преимуществ перед остальными, и в математическом анализе применяются почти исключительно они. Но в практических вычислениях удобнее иметь дело с десятичными, для которых и составлены таблицы.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ВОЛШЕБНЫЙ ДВУРОГ"

Книги похожие на "ВОЛШЕБНЫЙ ДВУРОГ" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Бобров

Сергей Бобров - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ"

Отзывы читателей о книге "ВОЛШЕБНЫЙ ДВУРОГ", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.