» » » Ричард Фейнман - 6a. Электродинамика

Ричард Фейнман - 6a. Электродинамика

Здесь можно скачать бесплатно "Ричард Фейнман - 6a. Электродинамика" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:

Название:
6a. Электродинамика
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "6a. Электродинамика"

Описание и краткое содержание "6a. Электродинамика" читать бесплатно онлайн.








6a. Электродинамика

Глава 22

ЦЕПИ ПЕРЕМЕННОГО ТОКА

§ 1. Импедансы

§ 2. Генераторы

§ 3. Сети идеальных элементов; правила Кирхгофа

S 4. Эквивалентные контуры

§ 5. Энергия

§ 6. Лестничная сеть

§ 7. Фильтры

§ 8. Другие элементы цепи

Повторить: гл.2 (вып. 2) «Алгебра»; гл. 23 (вып. 2) «Резонанс»;

гл. 25 (вып. 2) «Линейные системы и обзор»

§ 1. Импедансы

В основном наши усилия при чтении этих лекций были направлены на то, чтобы по­лучить полные уравнения Максвелла. В преды­дущих двух главах мы обсудили следствия этих уравнений. Выяснилось, что они содержат объяснение всех статических явлений, которые мы изучали раньше, и явлений электромагнит­ных волн и света — вопроса, подробно изучав­шегося в самом начале нашего курса. Урав­нения Максвелла дают и то и другое, смотря по тому, где эти поля вычисляются: побли­зости от токов и зарядов или же вдали от них. Есть и промежуточная область, но о ней ничего интересного сказать нельзя; там никаких осо­бых явлений не происходит.

Но в электромагнетизме остается еще не­сколько вопросов, которые стоит осветить. Надо будет обсудить вопрос связи относитель­ности и уравнений Максвелла, т. е. выяснить, что произойдет, если на уравнения Максвелла посмотреть из движущейся системы координат. Важен еще и вопрос о сохранении энергии в электромагнитных системах. Кроме того, существует обширная область электромагнит­ных свойств материалов; до сих пор мы рас­сматривали только электромагнитные поля в пустом пространстве, если не считать изучения свойств диэлектриков. Да и при изучении света все еще оставалось несколько вопросов, которые хотелось бы рассмотреть еще раз с точки зре­ния уравнений поля.

В частности, надо бы еще раз вернуться к вопросу о показателе преломления (особенно у плотных веществ). Наконец, интересны яв­ления, связанные с волнами, заключенными внутри ограниченной области пространства. Мы кратко косну­лись этой проблемы, когда изучали звуковые волны. Но урав­нения Максвелла тоже приводят к решениям, которые пред­ставляют волны электрических и магнитных полей, замкнутые в некотором объеме. В одной из последующих глав мы рас­смотрим этот вопрос, имеющий важные технические примене­ния. И чтобы подойти к нему, мы начнем с того, что изложим свойства электрических цепей при низких частотах. После этого мы сможем сравнить такие системы, когда к уравнениям Максвелла применимо почти статическое приближение, и системы, в которых преобладают высокочастотные эффекты.

Итак, снизойдем с величественных и труднодоступных высот последних нескольких глав и обратим свой взор на сравнительно низменную задачу — задачу об электрических цепях. Впрочем, мы убедимся в том, что даже столь мирские дела оказываются весьма запутанными, если в них вникнуть достаточно глубоко.

В гл. 23 и 25 (вып. 2) мы уже обсуждали некоторые свойства электрических цепей (контуров). Теперь мы повторим часть из­ложенного там материала, но более подробно. Мы по-прежнему будем иметь дело с линейными системами и с напряжениями и токами, которые меняются синусоидально; поэтому мы можем представить все напряжения и токи в виде комплексных чисел, пользуясь экспоненциальными обозначениями, введенными в гл. 22 (вып. 2). Так, меняющееся во времени напряжение V(t) будет записываться в виде

(22.1)

где комплексное число, не зависящее от t. При этом, ко­нечно, подразумевается, что настоящее переменное по времени напряжение V(t) представляется действительной частью комп­лексной функции в правой части уравнения.

Подобным же образом и все другие меняющиеся во времени величины будут считаться изменяющимися синусоидально с той же частотой w. Мы будем писать

(22.2)

и т. д.

Большей частью мы будем писать уравнения, пользуясь обозначениями V, I, e, ...

(вместо...), помня при этом, что они изменяются со временем всегда так, как в (22.2).

В прежних наших рассуждениях об электрических цепях мы полагали, что такие вещи, как индуктивность, емкость и со­противление, вам знакомы. Сейчас мы немного подробнее объясним, что понимают под этими идеализированными эле­ментами схем. Начнем с индуктивности.

Фиг. 22.1. Индуктивность.

Индуктивность — это навитая в несколько рядов проволока в форме катушки, два конца которой выведены к зажимам на некотором расстоянии от катушки (фиг. 22.1). Предположим, что магнитное поле, создаваемое токами в катушке, не очень рас­пространяется на все пространство и не воздействует на другие части цепи. Обычно этого добиваются, придав катушке форму лепешки или намотав ее на подходящий железный сердечник (это сжимает магнитное поле); можно еще поместить катушку внутрь металлической коробочки: схематически это показано на фиг. 22.1. В любом случае предполагается, что во внешней области у зажимов а и b магнитным полем можно пренебречь. Кроме того, мы будем считать, что электрическое сопротивление проводов в катушке можно не учитывать. И наконец, полагают, что можно пренебречь и электрическим зарядом, возникающим на поверхности провода, когда создаются электрические поля.

С учетом всех этих приближений и возникает то, что назы­вают «идеальной» индуктивностью. (Позже мы вернемся к этому пункту и поговорим о том, что бывает в реальных индуктивностях.) Про идеальную индуктивность говорят, что напряжение на ее зажимах равно L(dl/dt). Почему? Когда через индуктив­ность идет ток, то внутри катушки создается магнитное поле, пропорциональное силе тока. Если ток во времени меняется, то меняется и магнитное поле. Вообще говоря, ротор Е равен —dB/dt; можно сказать и по-другому: контурный интеграл от Е по любому замкнутому пути равен (с минусом) быстроте изме­нения потока В через контур. Представьте теперь себе следую­щий путь: начинается он на зажиме а и тянется вдоль катушки (оставаясь все время внутри провода) к зажиму b; затем воз­вращается от зажима b к а по воздуху в пространстве вне ка­тушки. Контурный интеграл от Е по этому замкнутому пути можно записать в виде суммы двух частей:

(22.3)

Как мы уже выяснили раньше, внутри идеального проводника электрических полей существовать не может. (Малейшие поля вызвали бы бесконечно большие токи.) Поэтому интеграл от зажима а до b через катушку равен нулю. Весь вклад в кон­турный интеграл от Е приходится на путь снаружи индуктив­ности, от зажима b к зажиму а. А так как было предположено, что в пространстве вне «коробки» нет никаких магнитных полей, то эта часть интеграла не зависит от выбора пути. Значит, можно определить понятие потенциала обоих зажимов. Разность этих двух потенциалов и есть то, что называют напряжением V, так что

Полный интеграл по контуру — это то, что мы раньше назы­вали э. д. с. e. Он, естественно, равен скорости изменения магнитного поля в катушке. Мы уже знаем, что эта э. д. с. равна (со знаком минус) быстроте изменения тока, так что

где L индуктивность катушки. Поскольку dI/dt=iwI, то мы имеем

(22.4)

Тот способ, которым мы описали идеальную индуктивность, иллюстрирует общий подход к другим идеальным элементам цепи — обычно их называют «сосредоточенными» элементами. Свойства элемента полностью описываются на языке токов и напряжений, возникающих на его зажимах. Прибегнув к под­ходящим приближениям, можно игнорировать огромную слож­ность тех полей, которые возникают внутри объекта. То, что происходит внутри, отделяется от того, что происходит сна­ружи.

Для всех элементов цепи мы намерены сейчас найти соот­ношения, подобные формуле (22.4). В ней напряжение пропор­ционально силе тока с константой пропорциональности, кото­рая, вообще говоря, есть комплексное число. Этот комплексный коэффициент пропорциональности называется импедансом, и его привыкли обозначать через z (не следует путать с координатой z). В общем случае это функция частоты w. Стало быть, для каж­дого сосредоточенного элемента мы напишем

(22.5)

Для индуктивности мы имеем

(22.6)

Фиг. 22.2. Емкость (или конденсатор).

Рассмотрим с этой точки зрения емкость . Она состоит из двух проводящих пластин (обкладок), от которых к нужным за­жимам отходят два провода. Пластины могут быть любой формы и часто отделяются друг от друга каким-нибудь диэлектриком. Это схематически изображено на фиг. 22.2. Мы снова делаем несколько упрощающих предположений. Мы считаем, что пла­стины и провода — идеальные проводники, а изоляция между пластинами тоже идеальна, так что через нее никакие заряды с пластины на пластину перейти не могут. Затем мы предпола­гаем, что проводники находятся близко друг от друга, но зато аначительно удалены ото всех остальных проводников, так что все линии поля, выйдя из одной пластины, непременно окан­чиваются на другой. И тогда заряды на пластинах всегда равны и противоположны друг другу, причем по величине намного превосходят величину заряда на поверхности проводов. И на­конец, мы считаем, что поблизости от конденсатора магнитных полей нет.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "6a. Электродинамика"

Книги похожие на "6a. Электродинамика" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 6a. Электродинамика"

Отзывы читателей о книге "6a. Электродинамика", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.