Георг Гегель - НАУКА ЛОГИКИ. том I
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "НАУКА ЛОГИКИ. том I"
Описание и краткое содержание "НАУКА ЛОГИКИ. том I" читать бесплатно онлайн.
«Наука логики» — важнейшее сочинение Гегеля, где рельефно выступает его диалектический метод. Классики марксизма-ленинизма высоко ценят этот труд Гегеля.
Ленин писал, что «нельзя вполне понять «Капитала» Маркса и особенно его I главы, не проштудировав и не поняв всей Логики Гегеля». Гегель угадал диалектику вещей в диалектике понятий. Диалектика Гегеля идеалистична, поэтому Ленин писал: «Логику Гегеля нельзя применять в данном ее виде; нельзя брать как данное. Из нее надо выбрать логические (гносеологические) оттенки, очистив от мистики идей: это еще большая работа».
«Наука логики» Гегеля дается в новом переводе.
Хотя бы только за его красоту и за ныне скорее забытую, но вполне заслуженную славу, которой он пользовался, я хочу здесь еще сказать о декартовом методе касательных; он, впрочем, имеет также отношение к природе уравнений, о которой мы должны будем затем сделать еще дальнейшее замечание. Декарт излагает этот самостоятельный метод, в котором требуемое линейное определение также находится из той же производной функции, в своей и в других отношениях оказавшейся столь плодотворной геометрии (Oeuvres compl. ed. Cousin, tom. V, liv. II, p. 857 ss.), уча в ней о великой основе природы уравнений и их геометрического построения, а тем самым об очень расширенном анализе, о распространении его на геометрию вообще. Проблема получает у него форму задачи — провести прямые линии перпендикулярно к любому месту кривой, чем определяется подкасательная, и т. д. Мы вполне понимаем то чувство удовлетворения по поводу своего открытия, касавшегося предмета всеобщего научного интереса того времени и являвшегося всецело геометрическим, тем самым поднимавшегося так высоко над вышеупомянутыми методами голых правил, которые давались его соперникам, — то чувство, которое он выразил там в следующих словах: «J'ose dire, que c'est ceci le probleme le plus utile et le plus general, non seulement que je sache, mais meme que j'aie jamais desire de savoir en geometrie». («Я осмеливаюсь сказать, что это — самая полезная и самая всеобщая геометрическая задача не только из всех тех, которые я знаю, но также и из всех тех, которые я когда-либо желал знать в геометрии»). — Для решения этой задачи он кладет в основание аналитическое уравнение прямоугольного треугольника, образуемого ординатой той точки кривой, к которой должна быть перпендикулярной требуемая в задаче прямая линия, затем ею же самой, нормальной, и, в-третьих, поднормальною, т. е. той частью оси, которая отрезывается ординатою и нормальною. Из известного уравнения кривой в уравнение означенного треугольника подставляется затем значение ординаты или абсциссы; таким образом получается уравнение второй степени (и Декарт показывает, как и те кривые, уравнения которых содержат высшие степени, также сводятся к уравнению второй степени), в котором встречается лишь одна из переменных величин и притом в квадрате и в первой степени, — квадратное уравнение, которое сначала выступает как так называемое нечистое уравнение. Затем Декарт соображает, что если мы представим себе рассматриваемую точку кривой точкой пересечения последней и круга, то этот круг пересечет кривую еще в другой точке и тогда поручается для двух тем самым возникающих и неодинаковых x два уравнения с одинаковыми константами и одинаковой формы или же одно уравнение с неодинаковыми значениями x. Но уравнение делается одним уравнением лишь для одного треугольника, в котором гипотенуза перпендикулярна к кривой, т. е. оказывается нормальной, что представляют себе таким образом, что заставляют совпасть обе точки пересечения кривой кругом, и, следовательно, последний становится касающимся кривой. Но тем самым отпадает также и то обстоятельство, что корни x или y квадратного уравнения неодинаковы. В квадратном же уравнении с двумя одинаковыми корнями коэфициент члена, содержащего неизвестные в первой степени, вдвое больше лишь одного корня; это дает нам уравнение, посредством которого мы находим искомые определения. Этот ход решения должен быть признан гениальным приемом истинно аналитической головы, с которым не может сравниться принимаемая всецело ассерторически пропорциональность подкасательной и ординаты якобы бесконечно малым (так называемым) приращениям абсциссы и ординаты.
Полученное этим путем конечное уравнение, в котором коэфициент второго члена квадратного уравнения равен удвоенному корню или неизвестному, есть то же самое уравнение, которое находят посредством приема, применяемого диференциальным исчислением. Уравнение x2 — ax — b = 0 после его диференцирования дает новое уравнение 2 x — a = 0; а уравнение x3 — px — q = 0 дает 3 x2 — p = 0. Но при этом напрашивается замечание, что отнюдь не само собою разумеется, что такое производное уравнение также и правильно. При уравнении с двумя переменными величинами, которые от того, что они переменные, все-таки не теряют характера неизвестных величин, получается, как мы указали выше, лишь некоторое отношение, по тому указанному простому основанию, что замещение самих степеней функциями возвышения в степень изменяет значение обоих членов уравнения, и само по себе еще неизвестно, имеет ли еще место между ними уравнение при таком измененном значении. Уравнение dy/ dx = P ничего другого вовсе и не выражает, кроме того, что P есть некоторое отношение, и не надо приписывать dy/ dx никакого другого реального смысла. Но об этом отношении = P также еще неизвестно, какому другому отношению оно равно; лишь такое уравнение, пропорциональность, впервые сообщает ему численное значение и смысл. — Точно так же как (что было указано выше) то значение, которое называли приложением, берется извне, эмпирически, так и в тех полученных путем диференцирования уравнениях, о которых идет речь, для того, чтобы знать, верны ли еще полученные уравнения, должно быть известно из какого-то другого источника, имеют ли они одинаковые корни. Но на это обстоятельство в учебниках не дается определенных и ясных указаний; оно устраняется тем, что уравнение с одним неизвестным ( x), приведенное к нулю, тотчас же приравнивается к другому неизвестному ( y), откуда затем при диференцирования получается, конечно, dy/ dx, которое есть только некоторое отношение. Исчисление функций, конечно, должно иметь дело с функциями возвышения в степень, а диференциальное исчисленное с диференциалами, но из этого само по себе отнюдь еще не следует, что величины, диференциалы или функции возвышения в степень которых мы берем, сами также должны быть лишь функциями других величин. И кроме того в теоретической части, там, где даются указания, как должны быть выведены диференциалы, еще нет и мысли о том, что величины, оперировать с которыми согласно такому способу их вывода она учит, сами должны быть функциями других величин.
Относительно отбрасывания констант при диференцировании можно еще обратить внимание читателя на то, что это отбрасывание имеет здесь тот смысл, что константа оказывается безразличной для определения корней в случав их равенства, каковое определение исчерпывается коэфициентом второго члена уравнения. Так, в приведенном примере Декарта константа есть квадрат самого корня, следовательно, последний может быть определен как из константы, так и из коэфициентов, поскольку вообще как она, так и коэфициенты суть функции корней уравнения. В обычном изложении опущение так называемых констант (связанных с прочими членами лишь посредством знаков + и —) достигается простым механизмом приема, состоящего в том, что для нахождения диференциала сложного выражения приращение сообщается лишь переменным величинам и сформированное благодаря этому выражение вычитается из первоначального. Смысл констант и их отбрасывания, вопрос о том, в какой мере они сами суть функции и нужны ли они или не нужны со стороны этого определения, не подвергается обсуждению.
С отбрасыванием констант находится в связи одно замечание, которое можно сделать относительно названий диференцирования и интегрирования, замечание, сходное с тем, которое мы сделали раньше относительно наименований «конечное» и «бесконечное выражение»[83], а именно, что в их определении содержится скорее противоположное тому, что выражается этими названиями. Диференцирование означает полагание разностей; но диференцирование, наоборот, уменьшает число измерений уравнения и в результате отбрасывания константы устраняется один из моментов определенности; как мы уже заметили, корни переменной величины приравниваются, их разность, следовательно, устраняется. Напротив, при интегрировании следует снова присоединить константу; уравнение благодаря этому несомненно интегрируется, но в том смысле, что ранее устраненная разность корней восстанавливается, положенное равным снова диференцируется. — Обычный способ выражения способствует тому, чтобы оставить в тени существенную природу предмета и все сводить к подчиненной и даже чуждой главной стороне дела точке зрения отчасти бесконечно-малой разности, приращения и т. п., отчасти же голой разности вообще между данной и производной функцией, не обозначая их специфического, т. е. качественного различия.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "НАУКА ЛОГИКИ. том I"
Книги похожие на "НАУКА ЛОГИКИ. том I" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Георг Гегель - НАУКА ЛОГИКИ. том I"
Отзывы читателей о книге "НАУКА ЛОГИКИ. том I", комментарии и мнения людей о произведении.