» » » » Сергей Бабичев - Медицинская микробиология, иммунология и вирусология


Авторские права

Сергей Бабичев - Медицинская микробиология, иммунология и вирусология

Здесь можно купить и скачать "Сергей Бабичев - Медицинская микробиология, иммунология и вирусология" в формате fb2, epub, txt, doc, pdf. Жанр: Медицина, издательство ЛитагентСпецЛит. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Бабичев - Медицинская микробиология, иммунология и вирусология
Рейтинг:
Название:
Медицинская микробиология, иммунология и вирусология
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
978-5-299-00425-0
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Медицинская микробиология, иммунология и вирусология"

Описание и краткое содержание "Медицинская микробиология, иммунология и вирусология" читать бесплатно онлайн.



Учебник состоит из семи частей. Часть первая – «Общая микробиология» – содержит сведения о морфологии и физиологии бактерий. Часть вторая посвящена генетике бактерий. В части третьей – «Микрофлора биосферы» – рассматривается микрофлора окружающей среды, ее роль в круговороте веществ в природе, а также микрофлора человека и ее значение. Часть четвертая – «Учение об инфекции» – посвящена патогенным свойствам микроорганизмов, их роли в инфекционном процессе, а также содержит сведения об антибиотиках и механизмах их действия. Часть пятая – «Учение об иммунитете» – содержит современные представления об иммунитете. В шестой части – «Вирусы и вызываемые ими заболевания» – представлены сведения об основных биологических свойствах вирусов и о тех заболеваниях, которые они вызывают. Часть седьмая – «Частная медицинская микробиология» – содержит сведения о морфологии, физиологии, патогенных свойствах возбудителей многих инфекционных заболеваний, а также о современных методах их диагностики, специфической профилактики и терапии.

Учебник предназначен для студентов, аспирантов и преподавателей высших медицинских учебных заведений, университетов, микробиологов всех специальностей и практических врачей.

5-е издание, исправленное и дополненное






Третий этап – транслокация. Образовавшаяся новая пептидил-тРНК переносится из А-участка в Р-участок рибосомы, а сама рибосома продвигается вдоль мРНК ровно на один кодон (три нуклеотида). Это событие требует затраты энергии. Движущей силой транслокации служит ряд конформационных изменений, вызываемых в одном из белков рибосомы в результате гидролиза связанной с ним ГТФ. В момент транслокации происходит отделение освободившейся во время второго этапа от пептидила в Р-участке тРНК и возвращение ее в цитоплазму. По завершении третьего этапа рибосома возвращается в состояние, аналогичное исходному. Ее А-участок свободен и может принять новую молекулу аа-тРНК, отбираемую очередным кодоном мРНК, т. е. рибосома может снова повторить цикл элонгации.


Рис. 26. Схематическое изображение основных фаз элонгации, протекающей на рибосомах

Объяснение в тексте (по Б. Альбертсу [и др.])


Таким образом, каждый цикл работы рибосомы означает присоединение одной аминокислоты (трансляцию одного кодона). В ходе элонгации рибосома совершает последовательно столько циклов, сколько кодонов она транслирует, т. е. сколько аминокислот она включает в полипептидную цепь.

Терминация трансляции

Терминация трансляции – процесс завершения синтеза полипептидной цепи и освобождение ее из связи с последней донорной тРНК и с рибосомой. Функцию сигнала, означающего конец трансляции цистрона мРНК, выполняет один из 3 кодонов – УАА, УАГ и УГА. Эти триплеты не кодируют ни одной из 20 аминокислот («стоп-кодоны»). После завершения трансляции происходит отделение от рибосомы не только полипептидной цепи и тРНК, но и мРНК, и диссоциация 70S рибосомы на 50S и 30S субъединицы.

Помимо стоп-кодонов, в этих реакциях принимают участие различные белковые факторы освобождения, а также обе субъединицы рибосомы.

Вновь синтезированная полипептидная цепь отделяется от рибосомы, когда рибосома достигает одного из трех стоп-кодонов. Со стоп-кодоном, поступившим на А-участок, в этом случае связывается не антикодон аа-тРНК, а особый белок – фактор освобождения. В результате его присоединения происходит изменение активности расположенного по соседству фермента пептидилтрансферазы. Измененный фермент присоединяет к пептидил-тРНК не свободную аминогруппу аминокислоты, а молекулу H2O. Это приводит к гидролизу сложноэфирной связи между С-концевым карбоксилом пептидила и 3'-рибозы ЦЦА последней донорной тРНК. В результате гидролиза полипептид, удерживаемый на рибосоме только посредством его связи с молекулой тРНК, отделяется от рибосомы. Это влечет за собой отделение от рибосомы последней донорной тРНК, освобождение мРНК и диссоциацию 70S рибосомы на ее 30S и 50S субъединицы.

Модификация полипептидной цепи

Заключительным этапом биосинтеза белка является модификация полипептидной цепи, вслед за которой белковая молекула приобретает свою окончательную структуру и конформацию, определяющую ее функциональные свойства.

Реакция модификации чаще всего сводится либо к отделению только формильной группы метионина (у бактерий), и тогда N-концевой аминокислотой становится метионин; либо к отделению метионина (у животных) или формила и метионина (у бактерий), и тогда N-концевой становится аминокислота, располагающаяся вслед за метионином (формилметионином). В реакции модификации участвуют специальные ферментные системы – пептиддеформилаза (отделяет формильную группу от формилметионина), аминопептидаза (отщепляет метионин) или другие ферменты.

Реакции модификации осуществляются уже после освобождения полипептидной цепи из рибосомы.

В связи с тем что у бактерий хромосомы и плазмидные ДНК располагаются в цитоплазме и не отграничены от нее никакими мембранами, процессы транскрипции, трансляции и деградации мРНК протекают одновременно, т. е. трансляция мРНК может начинаться раньше, чем завершится транскрипция, а деградация мРНК начинается раньше, чем закончится ее полная трансляция.

Определение скорости биосинтеза белка у бактерий, проведенное с помощью различных методов, показало, что она соответствует включению рибосомой в полипептидную цепь в 1 с при температуре 37 °C 15 – 30 аминокислот.

Это означает, что рибосома продвигается вдоль мРНК со скоростью 45 – 90 нуклеотидов в 1 с. Следовательно, время для выбора каждой очередной аа-тРНК из среды и включения ее в полипептидную цепь, т. е. время полного рабочего цикла рибосомы, составляет около 0,03 – 0,06 с. За этот короткий срок на рибосоме осуществляется серия сложных и взаимообусловленных событий, обеспечивающих высокую точность процесса трансляции. Все это говорит о существовании специфических и надежных систем регуляции биосинтеза белка на уровне не только транскрипции, но и трансляции.

Синтез всех компонентов белоксинтезирующей системы, в том числе рибосом, контролируется соответствующими генами. Существенно, что у бактерий имеется по нескольку копий оперонов рибосомальных РНК, например, у E. coli их шесть. Это позволяет бактериям значительно изменять скорость биосинтеза рРНК, а следовательно и рибосом, в зависимости от условий среды. Поэтому содержание рибосом у них не является постоянным, а может варьировать, например, у E. coli от 10 тыс. до 100 тыс. и более на клетку. Чем богаче среда, тем больше в клетке синтезируется рибосом. Для бактерий характерна следующая фундаментальная закономерность: общая интенсивность биосинтетических процессов (а следовательно, и скорость роста) определяется суммарной скоростью биосинтеза белка, а она, в свою очередь, непосредственно зависит от содержания в клетке рибосом. Поэтому регуляция содержания рибосом является одним из важнейших механизмов, с помощью которых осуществляются адаптация бактерий к изменяющимся условиям среды и эволюционное сохранение видов бактерий в природе.

Таким образом, основными особенностями метаболизма бактерий являются: высокая интенсивность обмена веществ, разнообразие типов метаболизма, способность к саморегуляции активности биосинтетических процессов в зависимости от условий существования. Кроме того, гены бактерий, в отличие от генов вирусов и эукариот, не содержат интронов, поэтому у бактерий отсутствует процесс сплайсинга при синтезе мРНК.

Сплайсинг мРНК (англ. splice – сращивать) – сложный процесс, при котором происходит вырезание интронов (некодирующих последовательностей у генов, имеющих интрон-экзонную структуру) из первичных РНК-транскриптов и сшивание экзонов, в результате которого образуется и затем транслируется зрелая мРНК.

Размер интронов у эукариот варьирует приблизительно от 100 до 10 000 нуклеотидов. Основное отличие интронов от экзонов (кодирующих последовательностей) состоит в том, что большую часть нуклеотидов интрона можно искусственно изменить, не нарушая функции гена.

На каждом из концов интрона находятся короткие нуклеотидные последовательности (почти одинаковые у всех интронов), которые служат сигналами для сплайсинга РНК. Предполагается, что вырезание интронов и сращивание экзонов происходит с участием специфических последовательностей РНК, называемых донорными (5'-конец) и акцепторными (3'-конец) контактами (сайтами) сплайсинга. Процесс выщепления интрона должен происходить с большой точностью, так как ошибка, которая приведет к появлению хотя бы одного неправильного нуклеотида, вызовет изменение рамки считывания и, следовательно, структуры белка или прекращение трансляции из-за образования стоп-сигнала.

Сплайсинг в ядре протекает с участием особых малых ядерных рибонуклеопротеиновых частиц (мяРНП), или частиц U1. Эта частица содержит небольшую молекулу РНК длиной 165 нуклеотидов, в составе которой имеются последовательности, комплементарные нуклеотидным последовательностям пограничных экзон-интронных и интрон-экзонных сайтов молекулы первичного РНК-транскрипта. Благодаря комплементарному спариванию оснований РНК U1 и РНК-транскрипта происходят сближение донорного и акцепторного сайтов, затем их разрывы и воссоединение цепи в области донорного и акцепторного контактов, формирование единой молекулы зрелой РНК и выщепление интронных последовательностей.

Наличие аппарата сплайсинга наделяет эукариотные клетки дополнительной генетической гибкостью, связанной с тем, что сплайсинг одного и того же первичного транскрипта (особенно при наличии в гене нескольких интронов), осуществляемый разными способами, может привести к образованию нескольких молекул мРНК, кодирующих разные белки. Такая неоднозначность сплайсинга присуща и вирусам, например аденовирусам, ретровирусам, вирусу гепатита В и др. Геном аденовируса направляет синтез нескольких очень длинных РНК-транскриптов, каждый из которых содержит нуклеотидные последовательности, кодирующие целый ряд различных белков. У вируса иммунодефицита человека 9 генов кодируют 15 вирусспецифических белков. Таким образом, благодаря механизму сплайсинга обеспечивается повышение информационной емкости генома без увеличения его размера. Это особенно важно для вирусов, у которых размер генома жестко ограничен величиной вириона.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Медицинская микробиология, иммунология и вирусология"

Книги похожие на "Медицинская микробиология, иммунология и вирусология" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Бабичев

Сергей Бабичев - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Бабичев - Медицинская микробиология, иммунология и вирусология"

Отзывы читателей о книге "Медицинская микробиология, иммунология и вирусология", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.