» » » » Джонджо МакФадден - Жизнь на грани


Авторские права

Джонджо МакФадден - Жизнь на грани

Здесь можно купить и скачать "Джонджо МакФадден - Жизнь на грани" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство Питер, год 2016. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джонджо МакФадден - Жизнь на грани
Рейтинг:
Название:
Жизнь на грани
Издательство:
неизвестно
Жанр:
Год:
2016
ISBN:
978-5-496-02158-6
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Жизнь на грани"

Описание и краткое содержание "Жизнь на грани" читать бесплатно онлайн.



Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира. В ней авторы рассматривают как новейшие экспериментальные данные, так и открытия с переднего края науки, и делают это в неповторимо доходчивом стиле. Джим Аль-Халили и Джонджо Макфадден рассказывают о недостающем компоненте квантовой механики; феномене, который лежит в основе этой самой таинственной из наук.






Мы привыкли к представлениям о дыхании как о двухэтапном процессе: первый этап — вдох, то есть наполнение легких необходимым кислородом, и второй этап — выдох, то есть выделение углекислого газа как побочного продукта. Однако на самом деле дыхание представляет собой комбинацию из первого (подача кислорода) и последнего (выделение углекислого газа) этапов более сложного и упорядоченного молекулярного процесса, который протекает в каждой клетке нашего организма, а именно в сложных органеллах[39] под названием «митохондрии». Своим внешним видом митохондрии похожи скорее на бактериальные клетки, запрятанные внутрь наших животных клеток, поскольку они имеют собственные структурные единицы (мембраны) и даже собственную ДНК. Кстати, весьма вероятно, что митохондрии появились в результате захвата симбиотических бактерий предками современных животных и растительных клеток. Этот «захват» произошел сотни миллионов лет назад, и с тех пор захваченные клетками бактерии утратили способность существовать отдельно. Тем не менее вероятное происхождение митохондрий от независимых бактериальных клеток объясняет их способность совершать такой невероятно сложный процесс, как дыхание. К слову, если говорить о химической сложности процессов, дыхание занимает едва ли не второе место, уступая по сложности лишь фотосинтезу, о котором мы поговорим в следующей главе.

Чтобы понять, какую роль здесь играет квантовая механика, стоит упрощенно объяснить, что происходит в процессе дыхания. Однако даже в упрощенном виде дыхание представляет собой последовательность удивительных процессов, которые являют собой настоящее чудо, создаваемое биологическими наномеханизмами. Дыхание начинается со сгорания углеродного топлива — в данном случае питательных веществ, которые мы получаем с пищей. Так, углеводы распадаются в желудочно-кишечном тракте человека на моносахариды, в том числе глюкозу, которые попадают в кровь и доставляются ею к клеткам, нуждающимся в энергии. Кислород, необходимый для сжигания этого сахарного топлива, поставляется к тем же клеткам через кровь из легких. Как и при сгорании угля, электроны, находящиеся на внешних орбитах атомов углерода в молекуле, перемещаются в молекулу восстановленной формы никотинамидадениндинуклеотида (НАДН). Однако вместо мгновенного сцепления с атомами кислорода электроны переносятся от одного фермента к другому по внутриклеточной дыхательной цепи белков, словно палочка, которую бегуны передают друг другу во время эстафетной гонки. В каждом звене этой цепи переноса электрон попадает в более низкое энергетическое состояние, при этом разница в энергии используется для того, чтобы привести в действие ферменты, которые выкачивают протоны из митохондрий. Протон, вытесненный из митохондрии, затем используется для приведения в действие еще одного фермента — АТФазы, образующего молекулу аденозинтрифосфорной кислоты (АТФ). АТФ играет важную роль для всех живых клеток, а именно роль источника энергии, которая быстро переносится по клетке. АТФ обеспечивает энергией такие важные для организма процессы, как движение и сокращение мышц.

По своим функциям ферменты, приводимые в действие электронами и выкачивающие протоны, напоминают гидроаккумулирующую электростанцию, которая создает запас энергии, закачивая воду на горный склон. Аккумулируемая энергия в любой момент может быть высвобождена — стоит только пустить воду вниз по склону, и она запустит турбину, которая начнет производить электрическую энергию. Подобным образом ферменты дыхательной цепи выкачивают протоны из митохондрий. Когда протоны выходят из митохондрий наружу, они приводят в действие своего рода внутриклеточную турбину — фермент АТФазу. Фермент начинает свою работу и обусловливает очередной молекулярный танец, в результате которого из молекулы фермента и фосфатной группы образуется АТФ.

Продолжая нашу аналогию процесса порабощения энергии с эстафетной гонкой, представим, что вместо палочки бегуны передают друг другу бутылку с водой (бутылка символизирует энергию электронов). Кроме того, каждый спортсмен (представляющий фермент) сначала отпивает глоток воды из бутылки и только затем передает ее следующему бегуну. Так продолжается до тех пор, пока оставшаяся в бутылке вода не выливается в стоящее на финише ведро (кислород). Захват энергии электрона мелкими порциями делает весь процесс более эффективным по сравнению с вливанием электронов напрямую в кислород — потери тепловой энергии практически не происходит.

Итак, основные этапы дыхательного процесса вовсе не привычные для нас вдох и выдох, а упорядоченная передача электронов в эстафетной гонке с участием ферментов, которая проходит внутри наших клеток. Каждое звено цепи, на котором осуществляется передача электрона от одного фермента другому, составляет в длину несколько десятых ангстрема. В это расстояние укладывается много атомов, поэтому предполагалось, что электроны не могут перескочить через такую пропасть. Загадка дыхательного процесса заключается в том, как ферментам удается так быстро и успешно перебрасывать электроны через подобные молекулярные пропасти.

Впервые этим вопросом задался еще в начале 1940-х годов американский биохимик венгерского происхождения Альберт Сент-Дьерди, ставший в 1937 году лауреатом Нобелевской премии по медицине за открытие витамина C. В 1941 году Сент-Дьерди выступил с публичной лекцией «Навстречу новой биохимии». В ней ученый высказал предположение о том, что легкость, с которой электроны передаются от одной биомолекулы к другой, напоминает движение электронов в полупроводниках, например внутри кремниевых кристаллов, используемых в электронике. Однако всего через несколько лет было обнаружено, что белки плохо проводят электричество, поэтому электроны передаются от фермента к ферменту вовсе не тем способом, о котором говорил Сент-Дьерди.

Значительные успехи в химии были достигнуты в 1950-е годы. Выдающейся фигурой того времени является канадский химик Рудольф Маркус, основоположник теории, которая впоследствии была названа его именем (теория Маркуса). Теория Маркуса предлагает объяснение скорости, с которой электроны движутся и переходят из одних атомов и молекул в другие. За вклад в теорию переноса электронов Маркус был удостоен Нобелевской премии по химии в 1992 году.

Тем не менее полвека назад ответ на вопрос о том, каким образом ферменты, в особенности ферменты дыхательной цепи, способны совершать передачу электронов с высокой скоростью через громадные по молекулярным меркам расстояния, оставался загадкой. Существовало предположение о том, что белки последовательно сменяли друг друга в цепи, работая по принципу заводных механизмов, которые подводили далекие друг от друга молекулы на близкое расстояние, таким образом позволяя электронам совершать прыжок из одной в другую. В дополнение к этому предположению высказывалась важная идея о том, что действие подобного механизма будет значительно замедляться при низких температурах, когда возникнет недостаток тепловой энергии, необходимой для запуска этого заводного механизма. Однако в 1966 году произошел первый мощнейший прорыв в истории квантовой биологии, заключавшийся в результатах экспериментов, которые провели в Пенсильванском университете два американских химика — Дон Де-волт и Бриттон Чанс. Ученые доказали, что, вопреки ожиданиям, скорость переноса электронов ферментами дыхательной цепи не снижается при низких температурах[40].

Дон Де-волт родился в 1915 году в штате Мичиган, однако во время Великой депрессии его семья переехала на Запад. Он учился в Калифорнийском технологическом институте, а также в Калифорнийском университете в Беркли и получил докторскую степень по химии в 1940 году. Де-волт был ярым борцом за права человека. Во время Второй мировой войны он провел некоторое время в заключении за уклонение от военной службы. В 1958 году он отказался от должности профессора химии в Калифорнийском университете и переехал в штат Джорджия, где принимал активное участие в борьбе за расовое равноправие. Он обладал силой убеждения, был всей душой предан идее прав человека. Кроме того, он был сторонником мирных протестов, поэтому оказывался беспомощным в случае нападений, которые случались во время демонстраций с участием чернокожих активистов. Во время одного из маршей протеста ему сломали челюсть, когда на группу белых и чернокожих протестующих напала толпа. Однако это его не остановило.

В 1963 году Де-волт получил должность в Пенсильванском университете и стал работать вместе с Бриттоном Чансом, который был всего на два года старше, однако уже прославился на весь мир как один из самых выдающихся ученых в своей отрасли. Чанс получил две докторские степени — по физической химии и по биологии, поэтому его «отрасль» была достаточно широка, а научные интересы — многообразны. Большую часть времени он посвящал изучению структуры и функций ферментов, однако у него оставалось время и на занятия спортом: в 1952 году он стал золотым призером Олимпийских игр в парусном спорте.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Жизнь на грани"

Книги похожие на "Жизнь на грани" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джонджо МакФадден

Джонджо МакФадден - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джонджо МакФадден - Жизнь на грани"

Отзывы читателей о книге "Жизнь на грани", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.