» » » » Пиама Гайденко - Научная рациональность и философский разум


Авторские права

Пиама Гайденко - Научная рациональность и философский разум

Здесь можно купить и скачать "Пиама Гайденко - Научная рациональность и философский разум" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Литагент «Прогресс-Традиция»c78ecf5a-15b9-11e1-aac2-5924aae99221, год 2003. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Пиама Гайденко - Научная рациональность и философский разум
Рейтинг:
Название:
Научная рациональность и философский разум
Издательство:
неизвестно
Жанр:
Год:
2003
ISBN:
5-89826-142-7
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Научная рациональность и философский разум"

Описание и краткое содержание "Научная рациональность и философский разум" читать бесплатно онлайн.



Тема научной рациональности стала одной из ключевых не только в современной философии науки, но и в философии культуры и в социальной философии. В книге П. П. Гайденко рассмотрен процесс рождения науки Нового времени, прослежены те факторы – религиозные, общекультурные, социальные, – которые содействовали формированию принципов научной рациональности. Автор проводит сравнительный анализ античного и новоевропейского типов рациональности, обсуждает попытки ряда мыслителей XX в. преодолеть зауженные представления о рациональности и найти выход из кризисов, порожденных индустриально – технической цивилизацией.

Издание рассчитано на широкий круг читателей, интересующихся проблемами философии, науки и культуры.






26 Кант И. Сочинения. Т. 3. С.581–582. – Выделено мной. – Г1. Г.

27 Там же. С. 591.

28Тамже. С. 586. «Полное целесообразное единство… есть совершенство», – замечает Кант (Там же). Не случайно математики нередко считают, что самым убедительным признаком истинности математического доказательства, построения и т. д. является его красота (например, так полагал П. Дюгем). Здесь речь идет не о субъективно – произвольном критерии истины, а напротив, о высшем, т. е. разумном, ее критерии.

Совершенство, красота – это целесообразность, т. е. печать высшего единства, требуемого разумом.

29 Это не значит, что для достижения этой целесообразности надо насильственно навязывать природе цели там, где их не удается обнаружить: такая «телеология» гибельна для науки. А вот искать целесообразность, проводя строго научное исследование, – это, по Канту, продуктивный эвристический подход.

30 Кант И. Сочинения. Т. 3. С. 351.

31 Там же С.352–353.

32 Кант И. Основы метафизики нравственности // Сочинения. Т. 4. Ч. 1. С. 289.

33 Там же. С. 250.

34 Там же. С. 275.

35 Там же. С. 269.

36 Метафизика, I, 2.

37 Метафизика, XII, 7.

38 «Все, что есть благо, само по себе и по своей природе есть некоторая цель» (Метафизика, III, 2).

39 Метафизика, И, 2.

40 Об оживлении этого интереса свидетельствуют некоторые работы зарубежных ученых. См., например: Science et philosophic de la Nature. Un nouveau dialogue, ed. Luciano Boi. Bern, Berlin, Frankfurt a. М., New York, Oxford, Wien, 2000. См. также: Hoffmann Th. S. Philosophische Physiologie. Stuttgart, 2002.

Раздел I

Формирование античной науки в лоне философии

Глава 1

У истоков античной математики

В последнее время в связи с углубленным изучением тех поворотов в развитии науки, которые обычно называют научными революциями, нередко можно встретиться с утверждением, что наука, какой мы ее видим сегодня, в сущности, берет свое начало на заре нового времени, в XVI – первой половине XVII вв. Что же касается тех форм знания, которые принято называть античной и средневековой наукой, то они настолько радикально отличны от науки нового времени, что тут вряд ли можно говорить даже о преемственности.

Не вдаваясь в подробное рассмотрение этого вопроса, достаточно сложного и требующего специального анализа, мы должны, однако, отметить один важный аргумент, говорящий против вышеприведенной точки зрения. Даже если допустить, что изменение научных методов исследования в XVI–XVII вв. было столь радикальным, что породило совершенно новую науку, то невозможно отрицать, что становление новой физики происходило на базе той математики, которая возникла в древности. Ибо «Начала» Евклида и математические сочинения Архимеда не только не были отброшены учеными XVII в., но, напротив, признавались тем фундаментом, на котором возводится здание новой науки.

Здесь, однако, может возникнуть вопрос: почему, желая исследовать, когда и как возникла математика как наука, мы обращаемся к древнегреческим мыслителям, в то время как уже до греков, в Вавилоне и Египте, существовала математика, а стало быть, здесь и следует искать ее истоки?

Действительно, математика возникла задолго до греков – в Древнем Египте и Вавилонии. Но особенностью древнеегипетской и вавилонской математики было отсутствие в ней систематичности, связи друг с другом отдельных положений, – одним словом, отсутствие системы доказательств1 которая впервые появляется именно у греков. «Большое различие между греческой и древневосточной наукой, – пишет венгерский историк науки А. Сабо, – состоит именно в том, что греческая математика представляет собой систему знаний, искусно построенную с помощью дедуктивного метода, в то время как древневосточные тексты математического содержания – только интересные инструкции, так сказать рецепты и зачастую примеры того, как надо решать определенную задачу»2. Древневосточная математика представляет собой совокупность определенных правил вычисления; то обстоятельство, что древние египтяне и вавилоняне могли осуществлять весьма сложные вычислительные операции, ничего не меняет в общем характере их математики.

Эти характерные особенности древневосточной математики объясняются тем, что она носила практически – прикладной характер: с помощью арифметики египетские писцы решали задачи о расчете заработной платы, о хлебе или пиве и т. д.3, а с помощью геометрии вычисляли площади или объемы. «…В обоих случаях вычислитель должен был знать правила, по которым следовало производить вычисление. Но что касается систематического вывода правил для этих расчетов, то о них нет речи, да и не может идти, ибо часто (как, например, при определении площади круга) употребляются только приближенные формулы»4.

В Греции мы наблюдаем появление того, что можно назвать теоретической системой математики: греки впервые стали строго выводить одни математические положения из других.

Надо отметить, что в Древней Греции так же, как и в Вавилоне и Египте, разрабатывалась техника вычислений, без которой невозможно было решать практические задачи строительства, военного дела, торговли, мореходства и т. д. Но важно иметь в виду, что сами греки называли приемы вычислительной арифметики и алгебры логистикой λογιστική– счетное искусство, техника счисления) и отличали логистику как искусство вычисления от теоретической математики. Правила вычислений, стало быть, разрабатывались в Греции точно так же, как и на Востоке, и, конечно, греки при этом могли заимствовать очень многое как у египтян, так и в особенности в малоазийских государствах. Математические знания Египта, Вавилона и Греции, использовавшиеся для решения практических задач, явились одновременно реальным фундаментом для последующего осмысления математики как системной теории.

Становление математики как системной теории, какой мы ее находим в евклидовых «Началах», представляло собой длительный процесс: от первых греческих математиков (конец VI в. до н. э.) до III в. до н. э., когда были написаны «Начала», прошло около трехсот лет бурного развития греческой науки. Однако уже у ранних пифагорейцев5, т. е. на первых этапах становления греческой математики, мы можем обнаружить особенности, принципиально отличающие греческую математику от древневосточной.

Прежде всего такой особенностью является новое понимание смысла и цели математического знания, иное понимание числа: с помощью числа пифагорейцы не просто решают практические задачи, а хотят объяснить природу всего сущего. Они стремятся поэтому постигнуть сущность чисел и, главное, числовых отношений. По существу, именно пифагорейцы впервые пришли к убеждению, что «книга природы написана на языке математики», – как спустя более двух тысячелетий сформулировал эту мысль Галилей.

Если смотреть на развитие науки исторически, то не будет ничего удивительного в том, что мыслители, впервые попытавшиеся не просто технически оперировать с числами (т. е. вычислять), но понять саму сущность числа и характер отношений чисел друг к другу, могли решать эту задачу первоначально только в форме объяснения всей структуры мироздания с помощью числа как первоначала. Поэтому можно сказать так: чтобы появилась математика как теоретическая система, какой мы ее обнаруживаем у Евклида, должно было сперва возникнуть учение о числе как некотором «едином» начале мира, и это учение сыграло роль посредника между древней восточной математикой как собранием образцов для решения отдельных практических задач и древнегреческой математикой как системой положений, строго связанных между собой с помощью системы доказательства.

Пифагорейцы сосредоточили внимание на том открытом ими факте, что числа могут вступать между собой в некоторые отношения и эти числовые связи и отношения выражают собой существенные закономерности природных явлений и процессов. Согласно Филолаю, «все познаваемое имеет число. Ибо без последнего невозможно ничего ни понять, ни познать»6. Сделанное пифагорейцами открытие было необходимым, но еще недостаточным условием для становления математической теории, как мы ее находим в «Началах» Евклида. Греческая научно – философская мысль должна была пройти еще ряд этапов, чтобы те первоначальные интуиции, которые лежали в основании пифагорейской математики, отлились в форму логически ясных понятий. Пифагорейские представления об отношении вещей и чисел первоначально были весьма неопределенными с логической и онтологической точки зрения.

Так, от Аристотеля мы получаем свидетельство, что пифагорейцы не проводили принципиального различия между числами и вещами. «Во всяком случае, – говорит Аристотель, – и у них, по – видимому, число принимается за начало и в качестве материи для вещей и в качестве выражения для их состояний и свойств…»7. Согласно Аристотелю, пифагорейцы не ставят вопроса о способе существования числа, т. е. о его онтологическом статусе, а потому у них «чувственные сущности состоят из этого числа»8, а это, в свою очередь, возможно лишь при условии, если числа имеют пространственную величину9. Если Аристотель здесь действительно адекватно воссоздает представления пифагорейцев, то в таком случае, надо полагать, они мыслили числа как некоторые «телесные единицы», и не случайно пифагореец Экфант, по сообщению Аэция, «первый объявил пифагорейские монады телесными»10.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Научная рациональность и философский разум"

Книги похожие на "Научная рациональность и философский разум" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Пиама Гайденко

Пиама Гайденко - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Пиама Гайденко - Научная рациональность и философский разум"

Отзывы читателей о книге "Научная рациональность и философский разум", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.