» » » » Светлана Хворостухина - Утепление квартиры и дома современными материалами


Авторские права

Светлана Хворостухина - Утепление квартиры и дома современными материалами

Здесь можно купить и скачать "Светлана Хворостухина - Утепление квартиры и дома современными материалами" в формате fb2, epub, txt, doc, pdf. Жанр: Сделай сам, издательство Литагент «РИПОЛ»15e304c3-8310-102d-9ab1-2309c0a91052, год 2011. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Светлана Хворостухина - Утепление квартиры и дома современными материалами
Рейтинг:
Название:
Утепление квартиры и дома современными материалами
Издательство:
неизвестно
Год:
2011
ISBN:
978-5-386-02973-9
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Утепление квартиры и дома современными материалами"

Описание и краткое содержание "Утепление квартиры и дома современными материалами" читать бесплатно онлайн.



Проблемы теплоизоляции жилого дома актуальны для всех застройщиков. Сделать его настоящей крепостью мечтает каждый. А воплотить желаемое в действительность сегодня помогают новейшие строительные и утепляющие материалы, которые способны значительно повысить теплотехнические параметры выполняемых конструкционных элементов и улучшить микроклимат во внутренних помещениях жилой постройки.

Представленное издание будет интересным как для начинающих застройщиков, так и для профессионалов.






Проанализировав эти данные, можно увидеть, что показатели коэффициента строительного материала напрямую зависят от его плотности: чем она больше, тем выше теплопроводность. Объяснить такое явление достаточно просто. Дело в том, что поры материала, имеющего большую плотность, минимально заполнены воздухом, характеризующимся низкой теплопроводностью. Вследствие этого можно делать вывод о том, что большее количество пор обусловливает повышение плотности материала, а также, коэффициента его теплопроводности.


Таблица 1 Коэффициент теплопроводности строительных материалов


В том случае, если наполнителем пор строительного материала становится влажный воздух, показатели теплопроводности увеличиваются. Это связано с тем, что у воды коэффициент теплопроводности в 20 раз больше, чем у воздушных масс. Причем увеличение уровня влажности воздуха неизменно влечет за собой повышение степени теплопроводности.

Ярким примером зависимости показателей теплопроводности от уровня влажности воздуха являются сырые подвальные помещения многоэтажных построек. Влажные воздушные массы постепенно проникают в верхние ярусы здания, в результате чего отсыревают и разрушаются перекрытия и стены. К тому же в этом случае температура воздуха на первом этаже постройки будет ниже, чем на более высоких этажах.

Подобное явление обусловлено значительным снижением уровня теплоизоляции конструкционных элементов сооружения вследствие повышения (даже незначительного, около 5–6 %) их влажности. В результате при температуре воздуха снаружи –20° C и +20° C во внутренних помещениях +20° C температура сухого перекрытия будет составлять не более 14° C. А при повышении уровня его влажности данный показатель снизится до 12° C.

Для того чтобы предотвратить преждевременное разрушение конструкционных элементов постройки и обеспечить достаточно продолжительный срок ее эксплуатации, при ее возведении следует применять исключительно сухие строительные материалы. Это обязательное условие получения качественной, надежной и теплой постройки. Кроме того, при планировке ограждающие части необходимо устанавливать и изолировать таким образом, чтобы защитить их от воздействия влаги вследствие образования конденсата.

Теплопотери и теплоизоляция – ключевые понятия в строительстве

Как уже было замечено выше, ограждающие конструкционные элементы построек служат своеобразным щитом, который защищает сооружение от негативного воздействия климатических явлений: ветров, влаги, резких колебаний температуры воздуха. Кроме того, они препятствуют проникновению внутрь помещения холодных воздушных масс.

Помимо этого, ограждающие конструкции выступают как элементы строения, представляющие собой сопротивление теплопередаче. Иначе говоря, они пред отвращают выход теплого воздуха из внутренних помещений наружу. Причем более значительные по толщине конструкции оказывают большее сопротивление. При этом они характеризуются высокими теплоизоляционными свойствами, следовательно, они способны противостоять, не разрушаясь, воздействию низкой температуры (табл. 2).


Таблица 2 Показатели сопротивления теплопередаче строительных материалов



Помимо толщины конструкций, на показатели сопротивления теплообмена оказывают влияние излучение или конвекция, образующиеся на наружной и внутренней поверхностях стеновых перегородок. Объем теплопотерь напрямую зависит от коэффициента теплообмена. Материал, который имеет низкую сопротивляемость теплопередаче, характеризуется незначительными теплозащитными свойствами.

Наиболее показательными для определения степени сопротивления теплопередаче считаются зоны, располагающиеся на наружных, внутренних поверхностях ограждающего элемента и в его толще. Причем каждая из них обладает собственной величиной сопротивления теплопередаче. Теплоизолирующие качества материала и уровень его сопротивления теплопередаче устанавливается на основании интенсивности протекания процесса в указанных областях. Общий показатель сопротивления теплопередаче ограждающего конструкционного элемента определяется путем сложения полученных величин.

Неоспоримым является тот факт, что только в постройке с высокими теплозащитными свойствами можно создать пригодные для комфортного проживания условия. Известно, что температура тела человека выше температуры воздуха и ненагревающихся предметов, находящихся внутри жилища.

Таким образом, человек сам становится объектом, принимающим активное участие в теплообменных процессах, происходящих в той среде, где он находится. В связи с этим в течение всей своей жизни он вынужден постоянно утрачивать часть тепла.

Ученые подсчитали, что при температуре воздуха в помещении от 18° C до 20° C человек теряет около 116 Вт тепловой энергии. Причем 50 % составляет собственно излучение, еще 20 % приходится на испарение, а оставшаяся часть растрачивается на теплопроводность и конвекцию. Подобное соотношение между разными видами теплопотерь принято считать нормальным. При этом любое изменение температурного режима становится причиной нарушения указанной пропорции (рис. 5).


Рис. 5. Схема теплопотерь тела человека в состоянии покоя: 1 – при теплопередаче и конвекции; 2 – при теплопередаче, конвекции и излучении; 3 – при теплопередаче, излучении, конвекции и испарении


Следует заметить, что процесс теплопотерь протекает даже при сравнительно высокой температуре воздуха. При этом он осуществляется путем конвекции. Это происходит вследствие того, что тело человека не допускает перегрева и требует охлаждения. В результате повышения температуры воздуха он начинает потеть, что приводит к поддержанию нормальной температуры тела.

В том случае, если воздух охлаждается, показатели теплопотерь тела человека значительно увеличиваются, поскольку организм требует сохранения определенной температуры, на что затрачивается тепловая энергия.

При этом процесс теплопотерь протекает одновременно с тепловым излучением. Безусловно, чем ниже температура окружающего воздуха, тем выше будет утрата собственного тепла.

Как уже было замечено выше, во время пребывания внутри помещения какой-либо постройки человек вынужден участвовать в теплообмене. По мнению физиков, особенно интенсивен такой процесс, происходящий между телом человека, окнами и стеновыми перегородками.

Такое явление возникает вследствие того, что названные объекты обладают минимальными характеристиками сохранения тепла. При снижении температуры их поверхностей процесс теплопоглощения становится более интенсивным. А это, в свою очередь, приводит к снижению температуры тела человека, поскольку он является одним из активных участников теплообменного процесса.

Для того чтобы предотвратить переохлаждение либо минимизировать влияние процесса теплообмена на организм человека, ограждающие конструкционные элементы составляют и устанавливают так, чтобы сохранить определенный температурный режим на их поверхностях. В соответствии с этим подбирают и строи тельные материалы, из которых планируется выполнять данные конструкции. Только при таком подходе к проведению проектирования и выбору материалов можно получить комфортную для проживания людей постройку.

Как известно, воздушные массы содержат некоторое количество влаги. Ее образование в воздухе связано с жизнедеятельностью живых организмов и растений. Доказано, что в помещении с более высокой температурой воздуха влаги больше, чем в холодной комнате. Резкое снижение температуры является причиной выпадения и оседания капелек воды на поверхностях. Такое явление называется конденсатом, который оказывает разрушительное действие на конструкционные элементы и предметы, находящиеся в помещении.

Нормальным уровнем влажности воздуха принято считать показатель не более 60 %. Изменение его в ту или иную сторону вызывает явления, которые отрицательно воздействуют на окружающую среду. Например, при его понижении происходит высыхание слизистой, напротив, при повышении уровня влажности воздуха наблюдается уменьшение скорости испарения излишков влаги с тела человека.

Для того чтобы получить комфортное для проживания сооружение, при подборе материала и на этапе проектирования постройки важно уделить особое внимание теплоизоляционным характеристикам конструкций. Стены, например, должны быть выполнены из такого материала, который не позволит оседать влаге на поверхностях конструкционных элементов. Это, в свою очередь, предотвратит нарушение теплообменных процессов и не допустит переохлаждения тела человека.

На основании указанных факторов и следует определять теплозащитные параметры ограждающих конструкций. В строительстве существует понятие «нормативный температурный перепад». Под ним подразумевается разница между температурой воздуха внутри помещения и внутренней температурой стеновых перегородок. Согласно принятым нормативам, ее величина не должна превышать 6° C. Иными словами, максимально комфортным является помещение, в котором температура воздуха составляет 20° C, а температура внутренней поверхности стен не опускается ниже 14° C.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Утепление квартиры и дома современными материалами"

Книги похожие на "Утепление квартиры и дома современными материалами" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Светлана Хворостухина

Светлана Хворостухина - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Светлана Хворостухина - Утепление квартиры и дома современными материалами"

Отзывы читателей о книге "Утепление квартиры и дома современными материалами", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.