» » » » Игорь Скрипник - Тюнинг автомобиля своими руками


Авторские права

Игорь Скрипник - Тюнинг автомобиля своими руками

Здесь можно купить и скачать "Игорь Скрипник - Тюнинг автомобиля своими руками" в формате fb2, epub, txt, doc, pdf. Жанр: Сделай сам, издательство Литагент «АСТ»c9a05514-1ce6-11e2-86b3-b737ee03444a, год 2012. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Игорь Скрипник - Тюнинг автомобиля своими руками
Рейтинг:
Название:
Тюнинг автомобиля своими руками
Издательство:
неизвестно
Год:
2012
ISBN:
978-5-17-072561-8
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Тюнинг автомобиля своими руками"

Описание и краткое содержание "Тюнинг автомобиля своими руками" читать бесплатно онлайн.



Автолюбители, интересующиеся современным тюнингом, найдут в этой книге много полезной информации об усовершенствовании машин отечественного производства. Тюнинг двигателя, ходовой части, салона, кузова машины, подготовка автомобиля к настоящему ралли – все это в ваших силах, если вы воспользуетесь нашими советами и рекомендациями.

Для широкого круга читателей.






Рис. 8. Схема коллектора с переключаемой длиной трубопроводов для V-образного двигателя: 1 – впускной коллектор; 2 – заслонка переключения длины впускных трубопроводов; I – короткий трубопровод; II – длинный трубопровод


При частоте 4000 1/мин заслонки 2 перекрывают сечение длинных трубопроводов (на схеме соответствующее положение заслонки показано основной линией). Теперь короткий трубопровод I (длина около 380 мм и поперечное сечение примерно 1200 мм2) позволяет создать высокую максимальную мощность. Важным является то, что заслонка располагается в месте, где обе кривые воздушных потоков пересекаются. В противном случае при переключении трубопроводов возникает разрыв потока, и тогда при движении автомобиля возникает толчок. Аналогичными переключаемыми впускными трубопроводами оснащаются и V-образные 6-цилиндровые бензиновые двигатели, устанавливаемые на некоторые автомобили класса Е фирмы Mercedes.

Более простое по конструкции, но достаточно эффективное решение используется на некоторых рядных 6-цилиндровых двигателях. Во впускном коллекторе этих двигателей установлена разделительная заслонка, которая при низкой частоте вращения KB закрывается и делит коллектор на 2 части. При этом каждая часть впускной системы 6-цилиндрового двигателя обслуживает всего 3 цилиндра, в результате чего возникает волновой эффект, имеющий место в 3-цилиндровом двигателе. Таким образом, благодаря возникающему резонансному наддуву, при закрытой разделительной заслонке обеспечивается увеличение крутящего момента.

Примерная схема такой системы показана на рисунке 9.

Управление разделительной заслонкой может осуществляться как электромагнитным клапаном по сигналу блока управления (двигатели Omega 3000 и Senator фирмы Opel, двигатели автомобилей 280Е и 320Е фирмы Mercedes), так и исполнительным механизмом, срабатывающим в зависимости от разрежения во впускном коллекторе (двигатель М5 фирмы BMW). Практически у всех названных двигателей начиная с частоты вращения примерно 4000 1/мин разделительная заслонка открывается, и в результате этого форма волн изменяется так, что достигается высокая мощность.


Рис. 9. Схема системы впуска с разделяемым впускным коллектором: 1 – воздухозаборник; 2 – воздушный фильтр; 3 – разделительная заслонка; 4 – впускной коллектор; 5 – блок цилиндров двигателя; 6 – выпускные коллекторы


В зависимости от конструкции и настройки впускной системы можно получить дальнейшее увеличение мощности, если при очень высокой частоте вращения, начиная с 6000 1/мин, заслонку снова закрыть. Подобная система одинаково эффективна на двигателях как с двумя, так и четырьмя клапанами на цилиндр.

Степень сжатия

Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива) дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обедненной смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.

Нет сомнений в том, что высокая степень сжатия увеличивает мощность. Изображенная далее схема показывает, что мощность при полном открывании дроссельной заслонки теоретически улучшается при увеличении степени сжатия. Приведенные данные предполагают, что увеличение степени сжатия не создает проблем в других областях, таких как детонация и т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идет вверх, то при каждом увеличении прирост мощности будет все меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2 % роста мощности против 1,3 %).

Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путем установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т. е. определенных путем математических расчетов из фиксированного объема), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива.

Эффективность впуска может продолжать увеличиваться даже до точки «упаковки» цилиндра (объемная эффективность выше 100 %), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объемной эффективностью (значение более 100 % достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надежность двигателя.

Увеличение степени сжатия не всегда приводит к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надежность двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100 %. Когда VE увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается» смесью так, как если бы работал невидимый нагнетатель.

Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100 %, поступившая смесь находится под небольшим положительным давлением, однако она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем – рабочий объем двигателя не изменялся. Но изменили общий объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя.

Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента, скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3278 см3. Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объем над поршнем, находящимся в ВМТ, должен составлять половину от общего объема цилиндра или 1639 см3 (т. е. 1639 см3 «выбранного» объема плюс 1639 см3 камеры сгорания равны 3278 см3 общего объема цилиндра). Даже при 3278 см3 во всем цилиндре двигатель может втянуть только 1639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100 %) и только вытесненный объем поршня может работать для втягивания воздуха и топлива. Остальные 1639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Тюнинг автомобиля своими руками"

Книги похожие на "Тюнинг автомобиля своими руками" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Игорь Скрипник

Игорь Скрипник - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Игорь Скрипник - Тюнинг автомобиля своими руками"

Отзывы читателей о книге "Тюнинг автомобиля своими руками", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.