Авторские права

Сергей Кутя - Биология

Здесь можно купить и скачать "Сергей Кутя - Биология" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство Литагент «Ридеро»78ecf724-fc53-11e3-871d-0025905a0812. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Биология
Автор:
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Биология"

Описание и краткое содержание "Биология" читать бесплатно онлайн.



Базовой составляющей учебника «Биология» является «Программа по биологии для студентов медицинских учебных заведений» Министерства здравоохранения Российской Федерации и Всероссийского учебно-научно-методического центра по непрерывному медицинскому и фармацевтическому образованию. Учебник предназначен для студентов высших медицинских учебных заведений и врачей-интернов.






Рис.19. Схема строения т-РНК.


Рис. 20. Схема синтеза белка в рибосоме (трансляция).


Элонгация – продолжение трансляции. Рибосома двигается вдоль молекулы и-РНК. Транспортные РНК связываются с рибосомой и их анти-кодоны избирательно по правилу комплементарности контактируют с кодонами и-РНК. При совмещении кодона и антикодона аминокислота отрывается от т-РНК и включается в полипептидную цепь из аминокислот в большой субъединице рибосомы. При формировании первичной белковой структуры каждая новая аминокислота занимает место за аминокислотой, включенной непосредственно перед ней.

Терминация – окончание синтеза. В и-РНК есть трейлерный участок, содержащий стоп кодоны УАА, УАГ, УГА. Они указывают на завершение синтеза данного белка. Поэтому при контакте с ними сборка аминокислотной цепи заканчивается. Большая и малая субъединицы рибосом смыкаются.

Посттрансляцнонный уровень. Синтезированная белковая молекула начинает усложнять свою первичную структуру под действием ферментов. Происходит ее конформация, изменяется пространственная организация белка, он приобретает вторичную, третичную и четвертичную структуру.

Таким образом, мы узнали центральную догму молекулярной биологии. Она гласит: информация в живых организмах передается по цепи ДНК – РНК – белок. В настоящее время доказано явление обратной транскрипции, когда передача информации происходит от РНК к ДНК. В то же время совершенно невозможен перенос информации от белков обратно к нуклеиновым кислотам.

В соответствии с существующими представлениями синтез белка всегда начинается с работы генов. Работа генов – это способность транскрибировать, то есть направлять синтез и-РНК. Но не всегда работа гена заканчивается сборкой белковой молекулы. Как заметил один американский генетик, для того, чтобы выдать белок, гену нужно пробиться сквозь «клеточные джунгли». Выход конечного белкового продукта – это экспрессия гена. Она совершается в результате деятельности всей клетки с ее многокомпонентными механизмами белкового синтеза.


Энергетический обмен


Энергетическим обменом или диссимиляцией называются процессы ферментативного расщепления органических веществ и образование соединений богатых энергией. Энергетический обмен подразделяется на три этапа.

Первый этап, подготовительный, связан с пищеварением. Он происходит вне клетки. Крупные молекулы биополимеров распадаются на мономеры: белки – на аминокислоты, полисахариды – на простые сахара, жиры – на жирные кислоты и глицерин. При разрыве химических связей выделяется небольшое количество энергии, рассеянной в виде тепла. Мономеры поступают в кровь.

Второй этап – гликолиз, бескислородное расщепление глюкозы. Происходит внутриклеточно в цитоплазме, куда глюкоза поступает из крови. Включает ряд последовательных ферментативных реакций, в результате которых глюкоза распадается на две молекулы пировиноградной кислоты. Реакции протекают с участием фосфорной кислоты, образованием 2 молекул АТФ.



В процессе гликолиза выделяется 200 кДж энергии, из которых только 80 кДж (40%) аккумулируется в АТФ, остальные 120 кДж рассеиваются в виде тепла.

Гликолиз происходит во всех животных клетках, но является мало эффективным с энергетических позиций. Поэтому основные процессы накопления энергии совершаются на третьем этапе.

Третий этап – кислородный (аэробный – клеточное дыхание). Его называют окислительным фосфорилированием. Наблюдается полное кислородное расщепление органических веществ до двуокиси углерода СО2. Происходит освобождение атомов водорода Н (водород выделяется из углеводов в результате прохождения ими сложного ряда химических превращений, называемых циклом Кребса). Реакция протекает с участием АДФ и Н3Р04. При этом выделяется большое количество энергии, достаточное для синтеза 36 молекул АТФ.

Окислительное фосфорилирование совершается в митохондриях клеток Атомы водорода Н (электроны и протоны) переносятся на систему ферментов в митохондриальной мембране. Здесь они окисляются, то есть теряют электроны:

Н2 – 2е- 2Н+. Образуются свободные электроны е- и ионы водорода Н+ (протоны). В ходе дыхания электроны несколько раз пересекают мембрану митохондрий, вынося протоны Н+ на наружную поверхность. Количество положительно заряженных протонов там резко возрастает. Возникает градиент концентрации протонов и электрический потенциал. При напряжении 200 мВ в ферменте АТФ-синтетазе, встроенном в мембрану крист, открывается протонный канал. Через него протоны Н+ возвращаются на исходную позицию, где взаимодействуют с 02, образуя воду (2Н+ +02 = Н20). В момент прохождения протонов по каналу фермента электрическое поле разряжается, а энергия аккумулируется в реакции синтеза АТФ.

Итоговое уравнение внутриклеточного расщепления глюкозы:

Анаэробный этап:



Аэробный этап



Суммарное уравнение гликолиза:

38АДФ +38Н3Р04 +1520 кДж = 38 АТФ +38Н20

Таким образом, в ходе энергетического обмена из одной молекулы глюкозы образуется 38 молекул АТФ.

Блок-схема энергетического обмена


Теория гена

Теория – это система обобщающих положений в той или иной области знаний. Теория неразрывно связана с практикой, которая ставит задачи и побуждает к их решению. Наука генетика наиболее выразительно иллюстрирует эту взаимосвязь. Успехи современной молекулярной биологии существенно углубили и детализировали теоретическую базу генетики, обосновали молекулярно-генетический уровень жизни.


Структура гена

Грегор Мендель, разрабатывая основопологающие законы наследования (1856—1863 гг.), использовал понятие «наследственные зачатки», применяя для них буквенные обозначения. Термин «ген» (от греч. genos – происхождение) ввел датский генетик В. Йогансен (1909 г.). Ген – структурная и функциональная единица наследственности.

В современном понимании ген — это участок молекулы ДНК (у некоторых вирусов – РНК) со строго определенной последовательностью нуклеотидов, контролирующей синтез белка (белков-ферментов).

Детальный анализ генной активности позволил выделить следующие группы генов:

1) аллельные и неаллельные;

2) доминантные и рецессивные;

3) эпистатические и гипостатические;

4) структурные и регуляторные.

В целом, понятие «ген» ассоциируется с созидательными процессами, однако есть и гены деструктивные по своей природе: онкогены, гены-мутаторы, летальные и сублетальные гены. Генам свойственно объединиться в группы, полигены. Функционально близкие группы генов формируют кластеры, отвечающие за важнейшие функции организма (размножение, пищеварение и т.д.).

На молекулярном уровне гены образованы нуклеосомами и связывающми их фрагментами молекулы ДНК. Нуклеосома состоит из протеинового дискообразного остова, включающего 8 молекул (глобул) белков-гистонов: по 2 молекулы H2A, H2B, H3, H4. На него насажен виток молекулы ДНК, включающей 150 пар нуклеотидов. Нить ДНК непрерывно и последовательно связывает нуклеосомы, при этом межнуклеосомные участки называются линкерными и каждый из них содержит до 60 пар азотистых оснований. Полная нуклеосома включает собственно нуклеосому и примыкающий к ней линкерный участок, насчитывая таким образом, около 200 пар нуклеотидов.

При спирализации ДНК свободные пространства заполняет белок Н1 (рис. 21).


Рис. 21. Компоненты нуклеосом


Ген средней величины объединят около 6 нуклеосом. Методами секвенирования было установлено, что организм человека содержит 25—40 тысяч активно работающих генов. В последнее время специалисты по биоинформатике уточняют количество генов до 2025 тысяч из-за их повторения в геноме. Следует учитывать высокую динамичность всей генной системы, и эти цифры, очевидно, будут меняться. Суть вопроса не в количестве генов, а в их сложности. Смысл эволюционных перестроек всей генной системы – это количество информации, включаемой в отдельный конкретный ген. Все гены функционируют как единое целое, формируя индивидуальный генотип особи и генотипическую среду, определяющую фенотипические проявления, т.е. признаки организма.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Биология"

Книги похожие на "Биология" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Кутя

Сергей Кутя - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Кутя - Биология"

Отзывы читателей о книге "Биология", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.