» » » » Ян Мархоцкий - Радиационная и экологическая безопасность атомной энергетики


Авторские права

Ян Мархоцкий - Радиационная и экологическая безопасность атомной энергетики

Здесь можно купить и скачать "Ян Мархоцкий - Радиационная и экологическая безопасность атомной энергетики" в формате fb2, epub, txt, doc, pdf. Жанр: Детская образовательная литература, издательство ЛитагентВышэйшая школаdd258350-1b67-11e6-bded-0cc47a545a1e, год 2009. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Ян Мархоцкий - Радиационная и экологическая безопасность атомной энергетики
Рейтинг:
Название:
Радиационная и экологическая безопасность атомной энергетики
Издательство:
неизвестно
Год:
2009
ISBN:
978-985-06-1803-0
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Радиационная и экологическая безопасность атомной энергетики"

Описание и краткое содержание "Радиационная и экологическая безопасность атомной энергетики" читать бесплатно онлайн.



Представлены сведения об элементах ядерной физики, естественных источниках радиации, действии ионизирующих излучений на организм человека, гигиенических аспектах радиационной безопасности, ядерном топливе, экологических проблемах энергетики, радиационной безопасности предприятий ядерно-топливного цикла.

Для студентов высших учебных заведений, учащихся средних специальных и общеобразовательных учебных заведений, широкого круга читателей.






Углерод-14. Общее содержание углерода в теле взрослого человека составляет в среднем 18 % т. е. около 12,6 кг. Углерод равномерно распределяется в тканях, следует считать, что их удельная радиоактивность по 14С составляет 52 Бк/кг.

Тритий — 3Н. Количество трития составляет 10,2 % в мышцах и 6,4 % – в костях. Удельная активность в мягких тканях тела человека за счет 3Н составляет 0,55 Бк/кг, а в костях – 0,34 Бк/кг.

Свинец — 210Pb. Основная часть свинца содержится в скелете. Удельная активность в костной ткани составляет 15 Бк/кг, а в мягких тканях – 6,4 Бк/кг.

Полоний — 210Ро. В течение суток из воздуха в легкие человека поступает около 0,0007 Бк/кг 210Ро, а у выкурившего 1 пачку сигарет в сутки – до 0,07 Бк/кг.

Содержание урана в организме невелико, на долю тория и его α-активных дочерних продуктов приходится до 40 % суммарной α-активности тела человека.

На накопление радиоактивности отдельными органами и тканями тела человека влияет:

• скорость обменных процессов в организме;

• функциональное состояние организма;

• содержание радиоизотопов в рационе питания, воде и вдыхаемом воздухе.

Поступление с рационом питания определенного количества радионуклидов должно уравновешивать выведение их из организма.

Нарушение равновесия между поступлением и выведением, т. е. увеличение радионуклидов в рационе, может проявляться патологией из-за избыточного облучения.

Строительные материалы. Материалы, применяемые в строительстве (кирпич, бетон, дерево, шлак), могут содержать радиоактивные вещества. В табл. 3 приводятся данные (НКДАР) об удельной активности некоторых радионуклидов в строительных материалах.


Таблица 3.

Удельная активность естественных радионуклидов некоторых строительных материалов


Определенный интерес представляют уровни γ-фона в жилых зданиях. Например, наименьший γ-фон в зданиях, построенных из дерева и известняка, – до 0,5 мЗв/г; в кирпичных и железобетонных зданиях – соответственно, до 1 и 1,7 мЗв/г.

Здания, с одной стороны, экранируют человека от внешних излучений, с другой – увеличивают дозы в зависимости от содержания естественных радионуклидов в строительных материалах. Годовая эффективная эквивалентная доза за счет внешнего облучения внутри помещений с учетом времени пребывания человека в помещениях составляет 2,9 10-9 Зв, а суммарная (вне и внутри помещения) годовая эффективная эквивалентная доза за счет внешнего облучения радионуклидами земного происхождения равна 3,5 • 10-4 Зв.

Промежуточный радиоизотоп в рядах урана и тория – радон. Значительную дозу облучения человек получает с вдыхаемым воздухом, находясь длительное время в непроветриваемых помещениях. Радон – газ, не имеющий вкуса и запаха, – один из промежуточных радиоизотопов в рядах урана (U) и тория (Th). Если распад урана и тория происходит не в монолитной, а в размельченной породе, он вытекает в атмосферу. Переносясь воздушными потоками, радон продолжает распадаться, образуя дочерние радиоизотопы.

Среди изотопов радона известны 222Rn с периодом полураспада 3,82 дня, 220Rn с периодом полураспада 54,5 с. Наиболее опасен для человека 222Rn, α-излучатель. При вдыхании с воздухом он вызывает внутреннее облучение легких. Таким образом, если радон нежестко связан с материнскими ядрами урана и тория, его можно рассматривать как самостоятельный источник радиоактивности.

Просачиваясь из грунта или материалов строительства дома, радон скапливается в закрытых непроветриваемых помещениях (подвалы, ванные комнаты, кухни и т. д.). Много радона содержится в таких строительных материалах, как пемза, гранит, шлак, сухая штукатурка, строительные блоки, изготовленные из фосфогипса, красный кирпич, полученный из отходов производства алюминия, доменные шлаки.

Концентрация радона на первом и цокольном этажах высокая, на верхних этажах – ниже. Эффективным средством уменьшения высоких концентраций радона, просачивающегося через пол, являются вентиляционные установки в подвалах. Выделение радона из стен уменьшается при покрытии их тремя слоями масляной краски или слоем обоев, облицовки их пластиковыми материалами.

В кухонные помещения радон проникает с природным газом. Его накопление можно уменьшить с помощью местной вытяжной вентиляции, проветривания кухни. Содержание его в природном газе уменьшается при переработке последнего на газонаполнительных станциях и в процессе хранения. Количество радона уменьшается в природном газе при увеличении пути от станции до потребителя.

Пресная минеральная вода нередко обогащена радоном. Вода частных и общественных колодцев может содержать от 740 Бк/м3 и достигать нередко 37·103 Бк/м3. Много радона в воде глубоких скважин и некоторых минеральных источниках, меньше – в воде рек и озер.

В незначительных дозах радон оказывает стимулирующее действие на организм, а в больших – угнетающее. При приготовлении пищи или кипяченой воды присутствующий радон в значительной степени улетучивается. Поступивший в организм радон сравнительно быстро выводится.

Значительную опасность для человека представляет попадание паров воды с высоким содержанием радона в легкие с вдыхаемым воздухом. Это чаще происходит в ванной комнате, а также при приеме радоновых ванн. Обследование домов в Финляндии показало, что концентрация радона в ванной комнате была в 40 раз выше, чем в жилых помещениях.

Выделяющийся радон из почвы, воды, строительных материалов рассеивается в воздухе. Дочерние продукты радона, как правило, в виде положительных ионов, присоединяются к составным элементам и аэрозольным частицам воздуха, которые осаждаются в дыхательных путях. Поэтому содержание радона в легких на 20–40 % выше, чем в других тканях.

Радиоизотоп радона 220Rn – торан (дочерний продукт тория) тоже существенно влияет на естественный фон Земли. Правда, его концентрация в природе незначительна по сравнению с концентрацией дочерних продуктов радона. При плохой естественной и искусственной вентиляции жилых и административных зданий, корпусов фабрик и заводов концентрация радона, торана и дочерних продуктов может увеличиваться до 740 Бк/м3. Безусловно, человек, находясь в таких помещениях, подвергается значительному облучению.

Зависимость уровня земной радиации от вида почв и климатических факторов. Почва – верхние слои земной коры, преобразованные под совокупным влиянием тепла, воды, воздуха, растительных и животных организмов, микроорганизмов и деятельности человека. Количество радиоактивных элементов, содержащихся в почвах, в значительной мере определяется концентрацией радиоактивных веществ в материнской породе, т. е. в гранитных породах гор. Почвы, возникшие из продуктов кислых магматических пород, содержат относительно большое количество урана, радия, тория, калия по сравнению с почвами, образованными из ультраосновных и основных пород. Глинистые почвы обычно богаче радиоактивными элементами, чем песчаные.

Радиоактивные газы, возникающие из дочерних продуктов урана, тория, поступают в атмосферный воздух. Скорость их поступления зависит от многих причин:

• от изменения барометрического давления (снижения);

• диффузии почвенных газов в сторону убывающей концентрации;

• нагревания земной поверхности, способствующего конвенции воздушных потоков;

• глубины промерзания почвы и толщины снегового покрова.

В приземном слое воздуха концентрация радиоактивных газов самая высокая. Скорость поступления радона и торана в атмосферный воздух зависит от состояния почвы, ее пористости, температуры, влажности. Снежный покров толщиной 0,5 м на 80 % экранирует земную радиацию. Повышение атмосферного давления уменьшает эмиссию газов из почвы. В летний период, при нагревании почвы выше атмосферного воздуха, выделение радона увеличивается в результате конвенции.

Его концентрация в воздухе континентальных мест равна примерно 2-Ю3 Бк/м3, в прибрежных районах и на островах – 20 Бк/м3, а над океанами и в арктических областях – 2 Бк/м3.

Концентрация зависит от скорости ветра и температуры.

В некоторых районах мира мощность дозы естественного радиационного фона значительно выше той, которую испытывает большинство населения планеты. Особенно увеличен уровень радиации, исходящей из почвы и гор, например в районах Памира и Тибета, где отмечается высокое содержание урана и тория в породах вулканического происхождения. Неподалеку от города Посус-ди-Калдас в Бразилии есть небольшая возвышенность, на которой уровень радиации в 800 раз превосходит средний (0,3 Зв/кг). Во Франции примерно 1/6 часть населения живет в районах, где скалы состоят из гранита и радиационный фон составляет 1,8–3,5 Зв/кг. В Индии около 100 тыс. людей получают дозу, равную 13 Зв/кг. Это самый высокий уровень естественного радиационного фона, которому подвержен человек.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Радиационная и экологическая безопасность атомной энергетики"

Книги похожие на "Радиационная и экологическая безопасность атомной энергетики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ян Мархоцкий

Ян Мархоцкий - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ян Мархоцкий - Радиационная и экологическая безопасность атомной энергетики"

Отзывы читателей о книге "Радиационная и экологическая безопасность атомной энергетики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.