» » » » Педро Домингос - Верховный алгоритм: как машинное обучение изменит наш мир


Авторские права

Педро Домингос - Верховный алгоритм: как машинное обучение изменит наш мир

Здесь можно купить и скачать "Педро Домингос - Верховный алгоритм: как машинное обучение изменит наш мир" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство ЛитагентМИФ без БКafcf7f36-d209-11e4-a494-0025905a0812, год 2016. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Педро Домингос - Верховный алгоритм: как машинное обучение изменит наш мир
Рейтинг:
Название:
Верховный алгоритм: как машинное обучение изменит наш мир
Издательство:
неизвестно
Год:
2016
ISBN:
978-5-00100-172-0
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Верховный алгоритм: как машинное обучение изменит наш мир"

Описание и краткое содержание "Верховный алгоритм: как машинное обучение изменит наш мир" читать бесплатно онлайн.



Машинное обучение преображает науку, технологию, бизнес и позволяет глубже узнать природу и человеческое поведение. Программирующие сами себя компьютеры – одна из самых важных современных технологий, и она же – одна из самых таинственных.

Ученый-практик Педро Домингос приоткрывает завесу и впервые доступно рассказывает о машинном обучении и о поиске универсального обучающегося алгоритма, который сможет выуживать любые знания из данных и решать любые задачи. Чтобы заглянуть в будущее и узнать, как машинное обучение изменит наш мир, не нужно специального технического образования – достаточно прочитать эту книгу.

На русском языке публикуется впервые.






Можно подумать, что в какой-то момент данные просто начнут повторяться, однако точки насыщения не видно, и «длинный хвост» продолжает тянуться. Вы, конечно, и сами видите: рекомендации Amazon или Netflix пока еще очень грубы, а результаты, которые выдает Google, оставляют желать много лучшего. С помощью машинного обучения можно улучшить каждое свойство продукта, каждый уголок сайта. Ссылку внизу страницы лучше сделать красной или голубой? Попробуйте оба варианта и посмотрите, какой соберет больше кликов. А еще лучше вообще не выключать обучающиеся алгоритмы и постоянно корректировать все элементы сайта.

Та же динамика наблюдается на любом рынке, где имеется много вариантов и огромный объем данных. Гонка в разгаре, и побеждает тот, кто учится быстрее. Дело не только в лучшем понимании клиента: компании могут применять машинное обучение к каждому аспекту своей деятельности при условии, что на эту тему есть данные, а источники данных – компьютеры, устройства связи и все более дешевые и вездесущие сенсоры. Сейчас любят повторять, что «данные – это новая нефть» и, как и с нефтью, переработка – большой бизнес. IBM, как и все остальные корпорации, построила свою стратегию роста на предоставлении аналитических услуг компаниям. Бизнес видит в данных стратегический ресурс: что есть у нас, но отсутствует у конкурентов? Как воспользоваться этим преимуществом? А какие данные есть у конкурентов, но нет у нас?

Как банк, не располагающий базами данных, не может тягаться с банком, их имеющим, так и компания, не применяющая машинное обучение, не сможет соперничать с теми, кто его использует. Пока в первой компании будут писать тысячи правил для прогнозирования пожеланий покупателей, алгоритмы второй компании найдут миллиарды правил, по целому набору для каждого отдельного клиента. Такая конкуренция напоминает атаку с копьями на пулеметы. Конечно, машинное обучение – крутая новая технология, но для бизнеса дело даже не в этом: ее придется применять, потому что другого выбора просто нет.

Турбоускорение для научного метода

Машинное обучение – все равно что научный метод с допингом. Оно следует той же схеме обобщения, проверки, исключения и уточнения гипотез, однако ученый может за свою жизнь придумать и протестировать несколько сотен предположений, а система машинного обучения проделает то же самое в долю секунды. Машинное обучение ставит открытия на поток, поэтому неудивительно, что в науке оно производит революцию, во многом подобную революции в бизнесе.

Чтобы развиваться, любая область науки нуждается в данных, соизмеримых по сложности с явлениями, которые она изучает. Именно поэтому физика первой пошла вперед: записей Тихо Браге о положении планет и наблюдений Галилея за маятником и наклонными плоскостями оказалось достаточно, чтобы сформулировать законы Ньютона. По той же причине молекулярная биология обогнала более старую нейробиологию: ДНК-микрочипы и высокоэффективное секвенирование дают столько данных, сколько нейробиологам и не снилось. Социальные науки находятся в этом отношении в невыгодном положении: с выборкой всего лишь в сотню человек по десятку измерений на каждого смоделировать получается лишь очень узкие явления. Но даже такие небольшие феномены не существуют в изоляции: на них влияют мириады факторов, а это значит, что ученые очень далеки от того, чтобы их понять.

Хорошая новость: сегодня даже науки, некогда оперировавшие небольшими объемами информации, получили приток данных. Вместо того чтобы платить 50 студентам, которые будут клевать носом в лаборатории психолога, можно получить сколько угодно испытуемых, дав задание краудсорсинговой площадке Amazon Mechanical Turk (к тому же выборка окажется более разнообразной). Сейчас уже не все помнят, как немногим более десятилетия назад социологи, изучавшие социальные сети, жаловались, что не могут найти такую сеть, в которой было бы больше нескольких сотен участников. Теперь в их распоряжении весь Facebook, где больше миллиарда пользователей рассказывают о своей жизни во всех подробностях – чем не прямая трансляция общественной жизни на планете Земля? Коннектомика[10] и функциональная магнитно-резонансная томография распахнули перед нейробиологами окно, через которое прекрасно виден головной мозг. В молекулярной биологии экспоненциально растут базы данных генов и белков. Даже «старые» дисциплины, например физика и астрономия, не стоят на месте благодаря потокам данных, льющимся из ускорителей частиц и цифрового исследования неба.

Однако от больших данных нет пользы, если их нельзя превратить в знание, и в мире слишком мало ученых, чтобы справиться с этой задачей. В свое время Эдвин Хаббл[11] открывал новые галактики, скрупулезно изучая фотографические пластинки, но можно ручаться, что таким способом не получилось бы найти полмиллиарда небесных тел, которые нам подарил проект Digital Sky Survey, – это было бы подобно ручному подсчету песчинок на пляже. Конечно, можно вручную написать правила, чтобы отличить галактики от звезд и шумов (например, птиц, самолетов или пролетающего мимо Супермена), но они будут не очень точными. Поэтому в проекте SKICAT, посвященном анализу и каталогизации изображений неба, был применен обучающийся алгоритм. Получив пластинки, где объектам уже были присвоены правильные категории, он разобрался, что характеризует каждую из них, а затем применил результаты ко всем необозначенным пластинкам. Эффективность превзошла все ожидания: алгоритм сумел классифицировать объекты настолько слабые, что человек не смог бы их выявить, и таких оказалось больше всего.

Благодаря большим данным и машинному обучению можно понять намного более сложные феномены, чем до появления этих факторов. В большинстве дисциплин ученые традиционно пользовались только очень скромными моделями, например линейной регрессией, где кривая, подобранная к данным, – всегда прямая линия. К сожалению (а может, и к счастью, потому что иначе жизнь была бы очень скучной – вообще говоря, никакой жизни бы и не было), большинство феноменов в мире нелинейны, и машинное обучение открывает перед нами огромный мир нелинейных моделей: это все равно что включить свет в комнате, которую до того освещала лишь Луна.

В биологии алгоритмы машинного обучения разбираются, где в молекуле ДНК расположены гены, какие фрагменты РНК вырезают при сплайсинге[12] перед синтезом белка, как белки принимают характерную для них форму и как заболевания влияют на экспрессию разных генов. Вместо того чтобы тестировать в лаборатории тысячи новых лекарств, обучающийся алгоритм спрогнозирует, будут ли они эффективны, и допустит до этапа тестирования только самые перспективные. Алгоритмы будут отсеивать молекулы, которые, скорее всего, вызовут неприятные побочные эффекты, например рак. Это позволит избежать дорогих ошибок, к примеру, когда лекарство запрещают только после начала испытаний на человеке.

Однако самый большой вызов – это собрать всю эту информацию в единое целое. Какие факторы усугубляют риск сердечных заболеваний и как они между собой взаимодействуют? Все, что было нужно Ньютону, – это три закона движения и один гравитации, однако одиночке открыть полную модель клетки, организма и общества не под силу. По мере роста объема знаний ученые все больше специализируются на какой-то области, но никто не способен собрать все части воедино, потому что элементов просто слишком много. Они сотрудничают друг с другом, но язык – очень медленное средство общения. Ученые пытаются быть в курсе других исследований, однако объем публикаций настолько велик, что они все больше и больше отстают, и зачастую повторить эксперимент проще, чем найти статью, в которой он описан. Машинное обучение и здесь приходит на помощь: оно просеивает литературу в поисках соответствующей информации, переводит специальный язык одной дисциплины на язык другой и даже находит связи, о которых ученые и не подозревали. Машинное обучение все больше напоминает гигантский хаб[13], через который методики моделирования, изобретенные в одной области, пробиваются в другие.

Если бы не изобрели компьютеры, наука застряла бы во второй половине ХХ столетия. Возможно, ученые заметили бы это не сразу и работали бы над все еще возможными небольшими успехами, но потолок прогресса был бы несравнимо ниже. Аналогично без машинного обучения многие науки в ближайшие десятилетия столкнулись бы с проблемой ослабевающей отдачи.

Чтобы увидеть будущее науки, загляните в лабораторию Манчестерского института биотехнологий, где трудится робот по имени Адам. Ему поручено определить, какие гены кодируют ферменты дрожжей. В распоряжении Адама есть модель метаболизма дрожжевой клетки и общие знания о белках и генах. Он выдвигает гипотезы, разрабатывает эксперименты для их проверки, сам проводит опыты, анализирует результаты и выдвигает новые гипотезы, пока не будет удовлетворен. Сегодня ученые все еще независимо проверяют выводы Адама, прежде чем ему поверить, но уже завтра проверкой этих гипотез займутся роботы.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Верховный алгоритм: как машинное обучение изменит наш мир"

Книги похожие на "Верховный алгоритм: как машинное обучение изменит наш мир" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Педро Домингос

Педро Домингос - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Педро Домингос - Верховный алгоритм: как машинное обучение изменит наш мир"

Отзывы читателей о книге "Верховный алгоритм: как машинное обучение изменит наш мир", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.