» » » » Лариса Шалковская - Основы физиологии сердца


Авторские права

Лариса Шалковская - Основы физиологии сердца

Здесь можно купить и скачать "Лариса Шалковская - Основы физиологии сердца" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство ЛитагентСпецЛитd5a9e1b1-0065-11e5-a17c-0025905a0812. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Лариса Шалковская - Основы физиологии сердца
Рейтинг:
Название:
Основы физиологии сердца
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Основы физиологии сердца"

Описание и краткое содержание "Основы физиологии сердца" читать бесплатно онлайн.



Книга содержит сведения о строении, функциях, онтогенезе, регуляции функций сердца в норме и при функциональных нарушениях. Авторы стремились к синтезу классических представлений о природе сердечной деятельности, механизмах ее миогенной, рефлекторной и гуморальной регуляции, а также результатов современных физиологических, молекулярно-биологических и биохимических исследований.

Особое внимание уделено физиологическому обоснованию наиболее распространенных инструментальных методов исследования электрической активности, биомеханики, насосной и эндокринной функций сердца (электро-, фоно- и эхокардиография, электромагнитная и ультразвуковая флоуметрия), а также вопросам интерпретации данных клинической функциональной диагностики и фундаментальных экспериментальных исследований.


Пособие предназначено для студентов биологических и медицинских вузов, аспирантов, клинических ординаторов, широкого круга биологов, исследователей, преподавателей и практикующих врачей.






Классические представления А. Ходжкина и Б. Катца о свойствах ионных каналов клеток возбудимых тканей, в том числе и миокарда, получили дальнейшее развитие в 1970– 1980-е гг. благодаря разработке методики точечной фиксации мембранного потенциала и регистрации тока через одиночные ионные каналы (patch clamp). Эта методика была впервые предложена Э. Неером и Б. Сакманом в 1976 г. и оказала огромное влияние на развитие клеточной электрофизиологии. (В 1991 г. указанные авторы получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся функций одиночных ионных каналов в клетках».) Ими было установлено, что активация (открытие) и закрытие ионных каналов представляют собой вероятностный процесс, поскольку у каждого канала имеется свой порог открытия. Некоторые ионные каналы могут проводить токи как внутрь клетки, так и из нее, то есть в различных направлениях.

В кардиомиоцитах были обнаружены несколько подтипов калиевых и натриевых каналов, различные виды каналов для ионов кальция и хлора. Приводим краткую характеристику основных типов ионных каналов миокардиальных клеток.

I. Каналы для ионов К+:

а) Потенциалзависимые:

1. Каналы входящего прямого К+ тока (англ. inward rectifier – входящие выпрямляющие), IK+1, способны проводить ионы калия внутрь клетки при изменении потенциала мембраны. Однако в основном эти каналы обеспечивают выходящий ток, то есть движение ионов калия из клетки, в результате чего возникает мембранный потенциал покоя. Блокируются ионами бария Ba2+ и цезия Cs+.

2. Быстро инактивируемые каналы выходящего K+-тока (англ. transient outward – быстро выводящие), Ito. Эти каналы по скорости прохождения через них ионов калия разделяются на два подвида: быстрые (англ. fast), Ito, f, и медленные (англ. slow), Ito, s.

3. Каналы задержанного выходящего тока (англ. delayed rectifier – задержанные выпрямляющие), IK+. В современной электрофизиологической литературе эти каналы разделяют на три подвида: медленно активируемые (IKS), быстро активируемые (IKR) и сверхбыстро активируемые (IKUR).

4. Кальций-регулируемые калиевые каналы, IK+, Ca2+ .

б) Лиганд-активируемые калиевые каналы выходящего тока:

1. Ацетилхолин-зависимые, IK+, Ach.

2. АТФ-активируемые, IK+, ATP.

II. Каналы для ионов Nа+ – потенциалзависимые. Эти каналы по скорости прохождения через них ионов натрия в клетку разделяются на два подвида:

1. Быстрые, блокируемые тетродотоксином, открытие которых формирует входящий ток INa+.

2. Гиперполяризационно-активируемые смешанные Na+/ K+-каналы, открытие которых формирует входящий ток If (от англ. funny – смешной, забавный). Обнаружены в основном в пейсмекерных клетках синусового узла. Особенностью этих каналов является их способность к проведению ионов как натрия, так и калия при гиперполяризации мембраны.

III. Каналы для ионов Са2+ (входящего Са2+-тока) – потенциалзависимые:

1. Т-тип (англ. transient – изменчивые, быстро инактивируемые), ICaT, открываются при величине мембранного потенциала –80… –60 мВ и блокируются ионами Mg2+. Эти каналы обнаружены, в частности, в пейсмекерных клетках синусового и атриовентрикулярного узлов, активируются во время диастолической деполяризации.

2. L-тип (англ. long lasting – долгодействующие), медленно инактивируемые, ICaL, открываются при величине мембранного потенциала –60… –40 мВ и блокируются верапамилом. Эти каналы проницаемы в основном для ионов Са2+ и лишь в минимальной степени Na+ (в соотношении примерно 1000: 1). Обнаружены в клетках рабочего миокарда, а также пейсмекерных клетках, обеспечивают входящий ток кальция во время потенциала действия. Ток через эти каналы усиливается в присутствии агонистов β-адренорецепторов, например адреналина.

3. Поддерживающие каналы входящего Ca2+-тока (англ. sustained inward current – поддерживающий входящий ток), Ist, сходные по свойствам с каналами L-типа. Эти каналы также обнаружены в пейсмекерных клетках синусового и атриовентрикулярного узлов, активируются во время диастолической деполяризации, блокируются антагонистом кальция никардипином.

4. DHPR-типа – дигидропиридиновые, блокируются дигидропиридинами, обнаружены в Т-трубочках мембран рабочих кардиомиоцитов, активируются во время фазы плато потенциала действия, обеспечивая усиление входа кальция. 5. RyaR-типа (рианодиновые), модулируются растительным алкалоидом рианодином, обнаружены в мембранах цистерн саркоплазматического ретикулума (СПР) рабочих кардиомиоцитов, обеспечивают выход кальция из СПР в цитоплазму при электромеханическом сопряжении.

IV. Каналы для ионов Сl:

– неспецифические хлорные каналы ICl;

– кальций-активируемые хлорные каналы ICa2+,Cl.

V. Неспецифические ионные каналы (англ. background), Ibg, могут проводить различные виды положительно заряженных ионов (К+, Na+) внутрь клетки при изменениях мембранного потенциала в лабораторных условиях.

VI. Механически активируемые (англ. stretch-activated) каналы смешанного Ca2+/Na+-тока активируются, например, в ответ на растяжение волокон миокарда.

Наиболее изученными являются натриевые каналы, которые широко представлены во всех возбудимых тканях, включая миокард. Исследованиями установлено, что каждый натриевый канал может находиться в трех состояниях: активированном, или открытом (О), и двух закрытых: инактивированном (И) и реактивированном (Р). Реактивированный канал в ответ на электрический стимул может перейти в открытое состояние, тогда как инактивированный – нет. Инактивированное состояние каналов отмечено при положительных значениях мембранного потенциала +20… +30 мВ, а реактивация возможна лишь при отрицательном значении мембранного потенциала, около –60 мВ. При более выраженной гиперполяризации мембраны (до –75… –80 мВ) вероятность открытия натриевого канала резко возрастает. Открытие и закрытие ионных каналов, обеспечивая движение трансмембранных ионных токов, формирует сдвиги мембранного потенциала кардиомиоцитов. Кроме того, эти процессы имеют значение в изменениях возбудимости и формировании рефрактерности миокарда.

Мембранные потенциалы клеток – водителей ритма в течение диастолы нестабильны, поскольку наблюдается самопроизвольное отклонение мембранного потенциала от максимального отрицательного уровня в сторону деполяризации – так называемая спонтанная (медленная) диастолическая деполяризация. Поэтому для этих клеток термин «потенциал покоя» не применяется, а максимальное отрицательное значение мембранного потенциала (примерно –65… – 50 мВ) называется максимальным диастолическим потенциалом. В сократительных кардиомиоцитах во время диастолы мембранный потенциал практически стабилен, и поэтому называется мембранным потенциалом покоя. Его происхождение в указанных клетках принципиально не отличается от генеза потенциала покоя в любых клетках как возбудимых, так и невозбудимых тканей, например эритроцитах. Напомним кратко ионные механизмы происхождения мембранного потенциала покоя.

Концентрация ионов калия внутри клетки (140 ммоль/л) многократно превышает содержание калия вне ее (5 ммоль/л). Кроме того, внутри клетки имеются отрицательно заряженные органические и в меньшем количестве неорганические анионы, которые уравновешивают заряд положительных ионов калия. Однако в покое проницаемость мембраны для ионов K+ больше, чем для отрицательно заряженных органических анионов, которые практически не могут выйти из клетки. Ионы же калия стремятся (по градиенту концентрации) выйти из клетки, и поэтому по мере их выхода на мембране возникает заряд – отрицательный по отношению к наружной поверхности клетки. При этом определенный момент времени осмотическая сила, способствующая выходу ионов калия, будет уравновешиваться электростатической силой притяжения разноименных (положительных и отрицательных) ионов. В результате на мембране установится динамическое равновесие между ионами К+, которые выходят из клетки, и теми ионами К+, которые притягиваются отрицательными анионами и частично возвращаются в клетку. Таким образом, возникает так называемый равновесный калиевый потенциал, который может быть рассчитан по уравнению Нернста:



где –59 – коэффициент, отражающий заряд и валентность иона; в числителе дроби – концентрация ионов внутри клетки; в знаменателе – снаружи. Рассчитанная таким образом величина калиевого равновесного потенциала составляет около –85…–90 мВ.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Основы физиологии сердца"

Книги похожие на "Основы физиологии сердца" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Лариса Шалковская

Лариса Шалковская - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Лариса Шалковская - Основы физиологии сердца"

Отзывы читателей о книге "Основы физиологии сердца", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.