» » » » Светлана Завалеева - Цитология и гистология


Авторские права

Светлана Завалеева - Цитология и гистология

Здесь можно купить и скачать "Светлана Завалеева - Цитология и гистология" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство ЛитагентБИБКОМd634c197-6dc9-11e5-ae5f-00259059d1c2. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Цитология и гистология
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Цитология и гистология"

Описание и краткое содержание "Цитология и гистология" читать бесплатно онлайн.



В учебном пособии приведены данные о микроскопическом и субмикроскопическом строении клеток, тканей и органов в их нормальном, интактном состоянии, содержатся описания препаратов, которые должны быть рассмотрены студентами на практических занятиях. Пособие снабжено большим количеством рисунков, схем и микрофотографий, в том числе и электронных, с учетом современных цитологических данных.






Взятие и фиксирование материала. Максимальные размеры кусочков составляют 1x1x0,5 см; соотношение объема материала и фиксирующей жидкости должно быть не менее 1:9. Взятый из органа образец ткани погружают в фиксатор – простой 70 – 96 %-й спирт, 10 – 12 %-й формалин, растворы уксусной кислоты, бихромата калия, осмиевой кислоты или сложный (смеси простых фиксирующих жидкостей или солей тяжелых металлов в определенных пропорциях, обеспечивающие рН и молярность, близкие к таковым в организме). Действие фиксаторов проявляется в том, что в тканях и органах, в результате сложных биофизических процессов, происходит необратимая коагуляция белков, жизнедеятельность прекращается, то есть клеточные структуры становятся мертвыми. Они теперь находятся в том функциональном состоянии, в котором их застигла смерть, то есть зафиксированными. Фиксация приводит к некоторому уплотнению и уменьшению объема образца.

Уплотнение образцов ткани. Цель этого этапа – достичь высокой плотности и пластичности материала для того, чтобы приготовить из него тонкие срезы. Применяют уплотняющие среды – парафин, целлоидин, желатин, органические смолы или замораживание. Пропитка парафином продолжается от 1 до 4 ч, целлоидином – до 1 – 3 нед. Кусочек ткани предварительно обезвоживают (проводят через спирты возрастающей концентрации); затем спирт вытесняют промежуточной средой, способной смешиваться со спиртом и одновременно растворять уплотняющее вещество. При использовании парафина промежуточной средой служат циклические углеводороды (бензол, ксилол) или хлороформ. Для того, чтобы избежать перепада температур (парафин плавится при 60 °C) после вытеснения спирта ксилолом, образец выдерживают от 2 до 3 ч в смеси парафина с ксилолом при температуре 38 °C. Из уплотненного парафином образца вырезают блоки, из которых и готовят тонкие срезы, способные пропускать свет (что является необходимым условием для световой микроскопии). Наиболее тонкие срезы (толщиной от 5 до 7 мкм) удается изготовить из материала, залитого в парафин. Из образцов, уплотненных целлоидином, готовят срезы толщиной от 10 до 30 мкм. Срезы получают на санных или ротационных микротомах; для экспресс-диагностики (срезы толщиной от 40 до 60 мкм) – на замораживающем микротоме.

Окрашивание срезов. Срезы окрашивают, чтобы увеличить контрастность различных гистологических структур в препаратах, предназначенных для исследования в световом микроскопе. Разработаны разнообразные методы окраски. В процессе окрашивания происходят сложные химические и физические процессы, поэтому при выборе метода учитывают избирательное сродство структур клетки к определенным красителям с разными физико-химическими свойствами.

Все красители подразделяют на кислые, основные и специальные. Структуры срезов, хорошо окрашивающиеся кислыми красителями, называют оксифильными, основными красителями – базофильными окрашивающиеся как теми, так и другими – нейтрофильными. Специальные красители селективно выявляют конкретные структуры, обладающие сродством к ним. Наиболее широко распространен комбинированный метод окраски тканей – гематоксилином и эозином. Гематоксилин (основной краситель) окрашивает ядра клеток в синефиолетовый цвет, а эозин (кислый) – элементы цитоплазмы в розово-желтый. Окрашенные препараты обезвоживают в спиртах восходящей концентрации (50 %, 70 %, 96 %, 100 %), просветляют в ксилоле или некоторых маслах и затем каждый гистологический срез заключают между предметным и покровным стеклами в канадский бальзам или синтетические смолы. Готовый (постоянный) гистологический препарат можно хранить годами и использовать для микроскопирования.

Методы микроскопии. Основным инструментом для изучения гистологического препарата служит микроскоп – световой или электронный.

Световая микроскопия. С помощыо современных световых микроскопов (МБР-1 – микроскоп биологический рабочий, МБИ-1, МБИ-3 или МББИ – микроскоп бинокулярный биологический исследовательский, ЛЮМАМ и других) можно изучать на срезах строение клеток и тканей. Размер наименьшей структуры, которую можно увидеть в световом микроскопе, определяется наименьшим разрешающим расстоянием (d0). У современных микроскопов оно составляет около 0,2 мкм. Приближенно разрешение, или разрешающую способность, можно рассчитать по формуле:

d0=1/3λ, (1)

где λ – длина световой волны.

Для более точного расчета используют формулу, учитывающую конструкцию объектива:



где n – показатель преломления среды между препаратом и фронтальной линзой объектива;

sin α – синус угла между оптической осью и наиболее сильно отклоняющимся лучом, который еще попадает в линзу объектива.

В микроскопических исследованиях используют следующие единицы измерения:

– 1мкм (микрометр)=1×10-3 мм = 1×10-6 м;

– 1 нм (нанометр) = 1×10-3 мкм = 1×10-6 мм = = 1×10-9 м;

– 1 Å (ангстрем) = 0,1 нм = 1×10-4 мкм = 1×10-7 мм = 1×10-10 м.

Из приведенных данных видно, что разрешающая способность световых микроскопов ограничена десятыми долями микрона (микрометра). Структуры клетки меньшего размера можно рассмотреть только с помощью электронного микроскопа. Подробное описание светового и электронного микроскопов дано в соответствующих руководствах и в курсе физики.

Ультрафиолетовая микроскопия – представляет собой разновидность световой. Длина волны ультрафиолетовых лучей составляет около 0,3 мкм; разрешающая способность микроскопа при иммерсионном объективе приблизительно 0,1 мкм.

Люминесцентная микроскопия основана на том, что многие органические вещества, содержащиеся в клетках, способны светиться (флуоресцировать) при поглощении ими световой энергии. Спектр флуоресценции постоянно смещен в сторону более длинных волн по отношению к изучению, возбуждающему флуоресценцию. Этот спектр лежит в пределах коротких волн (длина от 0,25 до 0,4 мкм). Например, хлорофилл зеленых растений в ультрафиолетовых лучах светится красным светом, а другие вещества – зеленым или желтым (то есть с более короткими волнами). Этот принцип использован при создании люминесцентных микроскопов. Источником света в них служат ксеноновые или ртутные лампы (их спектр близок к ультрафиолетовому излучению), а объект исследуют через специальные фильтры.

Собственной, или первичной, флуоресценцией обладают пигменты (в том числе бактерий), витамины А и В2, индоламины и некоторые другие вещества. Существует вторичная, или вызванная, флуоресценция. Чтобы ее получить, используют специальные вещества – флуорохромы, которые связываются различными структурами живой клетки и вызывают их флуоресценцию. Например, при обработке срезов тканей флуорохромом акридиновым оранжевым дезоксирибонуклеиновая кислота (ДНК) и ее производные приобретают яркозеленое свечение, а рибонуклеиновая кислота (РНК) и ее производные – яркокрасное. Разновидностью вторичной является флюоресценция желто-зеленого цвета, индуцированная парами формальдегида и характерная для катехоламинов (адреналин и норадреналин) мозгового вещества надпочечников. Таким образом, можно исследовать химический состав тканевых структур, выявлять трофические и секреторные включения в клетках.

Электронная микроскопия. В электронном микроскопе используются электронные лучи с более короткими, чем в световом микроскопе, длинами волн при напряжениях от 50000 до 100000 В. Длина волны электромагнитных колебаний, возникающих при движении потока или пучка электронов в условиях вакуума равна 0,0056 нм. Таким образом, разрешение достигает 0,002 нм или 0,000002 мкм, что в 100000 раз выше, чем в световом микроскопе. Разрешающая способность современных отечественных электронных микроскопов (ЭМВ-200, 300) и зарубежных (фирм Хитачи, Филипс) составляет не более от 1 до 5 А, однако на практике она не превышает от 0,2 до 0,5 нм, а для большинства биологических объектов от 1 до 2 нм. Методом электронной микроскопии исследуют ультратонкие срезы, толщиной от 500 до 1000 А, которые готовят на ультратомах – сложных электронных приборах, где ножами служат очень острые грани сломов зеркального стекла. Тончайшие срезы наносят на специальные металлические сетки с ячейками и помещают в вакуумную камеру электронного микроскопа. Обработка образцов тканей для ЭМ сходна с ранее описанной обработкой для световой микроскопии. Только здесь в качестве фиксаторов используют забуференные растворы параформа, тетроксида осмия, глютаральдегида (рН 7,0 – 7,4); образцы проводят через спирты восходящей концентрации и пропилен-оксид и заливают в синтетические смолы (аралдит, эпон или в их смесь). Чтобы более четко выявить, органеллы мембранного и немембранного типа в качестве контрастера применяют цитрат свинца и уранилацетат.

К современным электронно-микроскопическим методам относят просвечивающую, или трансмиссионную электронную микроскопию (ПЭМ), сканирующую электронную микроскопию (СЭМ) электронную авторадиографию, иммунно-электронную микроскопию, ЭМ-гистохимию.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Цитология и гистология"

Книги похожие на "Цитология и гистология" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Светлана Завалеева

Светлана Завалеева - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Светлана Завалеева - Цитология и гистология"

Отзывы читателей о книге "Цитология и гистология", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.