» » » Джон Гриббин - В поисках кота Шредингера. Квантовая физика и реальность


Авторские права

Джон Гриббин - В поисках кота Шредингера. Квантовая физика и реальность

Здесь можно купить и скачать "Джон Гриббин - В поисках кота Шредингера. Квантовая физика и реальность" в формате fb2, epub, txt, doc, pdf. Жанр: Образовательная литература, издательство ЛитагентРИПОЛ15e304c3-8310-102d-9ab1-2309c0a91052, год 2016. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Гриббин - В поисках кота Шредингера. Квантовая физика и реальность
Рейтинг:
Название:
В поисках кота Шредингера. Квантовая физика и реальность
Издательство:
неизвестно
Год:
2016
ISBN:
978-5-386-09614-4
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "В поисках кота Шредингера. Квантовая физика и реальность"

Описание и краткое содержание "В поисках кота Шредингера. Квантовая физика и реальность" читать бесплатно онлайн.



Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.

Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной. Книга ставит вопрос: «Что есть реальность?» – и приходит к самым неожиданным выводам. Показывается вся удивительность, странность и парадоксальность следствий, которые вытекают из применения квантовой теории.

Предназначено для широкого круга читателей, интересующихся современной наукой.






В опытах Ленарда использовались одноцветные пучки света (монохроматический свет), а это означает, что все световые волны обладают одинаковой частотой. Изучив, как интенсивность света влияла на процесс вырывания электронов из металла, Ленард пришел к удивительному результату. При использовании более яркого света (он просто передвигал тот же источник света ближе к металлической поверхности, что оказывало тот же самый эффект) на каждый квадратный сантиметр металлической поверхности попадало больше энергии. Если электрон получает больше энергии, он должен быстрее вырываться из металла и вылетать с большей скоростью. Однако Ленард обнаружил, что если длина световой волны оставалась неизменной, все вырванные электроны вылетали с одинаковой скоростью. Когда источник света придвигали ближе к металлической поверхности, количество вырываемых электронов увеличивалось, но каждый из этих электронов вылетал с той же скоростью, что и электроны, вырванные более слабым пучком света того же цвета. С другой стороны, электроны действительно двигались быстрее, когда использовался пучок света большей частоты – скажем, ультрафиолет вместо синего или красного цвета.

Все это объясняется очень просто, если вы готовы забыть о прочно укоренившихся идеях классической физики и посчитать уравнения Планка физически значимыми. Важность этой оговорки становится очевидна, когда узнаешь, что за пять лет, прошедших с начальной работы Ленарда над фотоэлектрическим эффектом и введения Планком концепции кванта, никто не предпринял этот, казалось бы, простой шаг. В сущности, Эйнштейн лишь применил уравнение Е = hv к электромагнитному излучению, а не к маленьким осцилляторам внутри атома. Он сказал, что свет не является непрерывной волной, как целое столетие считали ученые, а распространяется отдельными пакетами – квантами. Весь свет определенной частоты v, то есть определенного цвета, распространяется пакетами, обладающими одинаковой энергией Е. Каждый раз, когда один из этих квантов света ударяет электрон, он передает ему одинаковое количество энергии, а следовательно, одинаковую скорость. Большая мощность света означает лишь то, что квантов света (теперь мы называем их фотонами), обладающих одинаковой энергией, становится больше, но изменение цвета света изменяет его частоту, а значит, и количество энергии, переносимое каждым фотоном.

Именно за эту работу Эйнштейн в итоге получил Нобелевскую премию, которую вручили ему в 1921 году. И снова пришлось подождать, пока теоретический прорыв обретет полное признание. Идею о фотонах приняли не сразу, и, хотя опыты Ленарда в целом совпадали с теорией, потребовалось больше десяти лет, чтобы экспериментально доказать точное предположение о взаимозависимости скорости электронов и длины световых волн. Это удалось американскому экспериментатору Роберту Милликену, который в процессе опыта провел очень точное измерение значения h, постоянной Планка. В 1923 году Милликен тоже получил Нобелевскую премию по физике за свою работу и точные измерения заряда электрона.

Год у Эйнштейна выдался не из легких. Одна его работа в итоге привела к получению Нобелевской премии, другая раз и навсегда доказала реальность атомов, а в третьей родилась теория, прославившая его, – теория относительности. Практически случайно в том же 1905 году он закончил еще одну небольшую работу о размере молекул, которую подал в качестве докторской диссертации в университет Цюриха. Докторскую степень он получил в январе 1906 года. Хотя в те времена она не распахивала двери к активным исследованиям, как сегодня, все же примечательно, что три великие работы 1905 года были опубликованы человеком, который в момент их создания мог называть себя только «мистером» Альбертом Эйнштейном.

В последующие годы Эйнштейн продолжил интегрировать идеи Планка о кванте в другие области физики. Он обнаружил, что они объясняли давние загадки теории удельной теплоемкости (удельная теплоемкость вещества – это количество теплоты, которое необходимо сообщить телу, чтобы поднять его температуру на данную величину; она зависит от того, каким образом атомы колеблются внутри вещества, и эти колебания, как выяснилось, необходимо проквантовать). Эта физическая идея не столь привлекательна, и на нее часто не обращают внимания при изучении работ Эйнштейна, но квантовая теория вещества была принята быстрее, чем разработанная Эйнштейном квантовая теория излучения. Так многие физики старой школы начали убеждаться, что квантовые идеи стоит воспринимать всерьез. Эйнштейн долгие годы, вплоть до 1911-го, работал над улучшением своей концепции квантового излучения и доказал, что квантовая структура света является неизбежным следствием уравнения Планка, а также продемонстрировал невосприимчивому научному миру, что лучше понять природу света можно, связав волновую и корпускулярную теории, которые соперничали друг с другом с XVII века. К 1911 году его внимание переключилось на другие вещи. Он убедил самого себя в реальности квантов, а значение имело лишь его собственное мнение. Теперь его интересовала гравитация, и за пять лет – до 1916 года – он разработал общую теорию относительности, величайшую из его работ. Реальность квантовой природы света была окончательно подтверждена только в 1923 году, и это, в свою очередь, привело к новому спору о частицах и волнах, который помог трансформировать квантовую теорию и подтолкнуть появление ее современной версии, квантовой механики. Подробнее об этих идеях будет рассказано далее. Первый расцвет квантовой теории пришелся на десятилетие, в ходе которого Эйнштейн отдалился от этой области науки и сконцентрировался на других проблемах. Этот расцвет был связан с переплетением идей Эйнштейна с моделью атома Резерфорда и во многом произошел благодаря трудам датского ученого Нильса Бора, который работал вместе с Резерфордом в Манчестере. Когда Бор предложил свою модель атома, уже никто не смог усомниться в значении квантовой теории для описания физического мира мельчайших частиц.

Глава четвертая

Атом бора

К 1912 году кусочки атомной мозаики начали складываться воедино. Эйнштейн дал широкое обоснование идее кванта и ввел представление о фотонах, хотя оно пока не получило всеобщего признания. Продолжая аналогию с банкоматом, можно сказать, что Эйнштейн полагал, будто энергия распространяется лишь кусками определенного размера – банкомат дает только суммы, кратные десяти фунтам, потому что это самая мелкая купюра, с которой он работает, а не из того, что так захотел программист, настроивший его. Резерфорд предложил новую картину атома, с маленьким ядром в центре и облаком электронов вокруг, хотя эта идея тоже не получила всеобщей поддержки. Впрочем, атом Резерфорда не мог быть стабилен согласно классическим законам электродинамики. Решение крылось в том, чтобы использовать квантовые законы для описания поведения электронов внутри атомов. И опять прорыв совершил молодой исследователь со свежим взглядом на проблемы – квантовая теория развивалась именно так.

Датский физик Нильс Бор окончил аспирантуру летом 1911 года и в сентябре отправился в Кембридж, чтобы работать вместе с Дж. Дж. Томсоном в Кавендишской лаборатории. Он был очень молодым исследователем, сильно стеснялся и не владел в совершенстве английским языком. Ему было непросто найти себе место в Кембридже, однако во время поездки в Манчестер Бор познакомился с Резерфордом и тот по-дружески отнесся к нему, заинтересовавшись его исследованиями. В итоге в марте 1912 года Бор переехал в Манчестер и приступил к работе в команде Резерфорда, сконцентрировавшись на загадке структуры атома[8]. Через шесть месяцев он вернулся в Копенгаген, но лишь на короткое время, до 1916 года оставшись вместе с группой Резерфорда в Манчестере.

Прыгающие электроны

Бор обладал редким гением, который и был необходим, чтобы толкнуть атомную физику вперед на десять – пятнадцать лет. Он не стремился объяснить все детали в полной теории, а пытался свести воедино различные идеи, чтобы создать воображаемую «модель», которая хотя бы в первом приближении согласовывалась бы с экспериментальными данными наблюдений реальных атомов. Когда у него появлялось грубое представление о том, что происходит, с помощью него он сшивал вместе кусочки и таким образом продвигался к цельной картине. Он отталкивался от представления, что атом являет собой миниатюрную Солнечную систему, в которой электроны движутся по орбитам согласно законам классической механики и электромагнетизма, и утверждал, что электроны не могут сойти с этих орбит, излучая при этом, поскольку они могут испускать только целые куски энергии – кванты, – а не непрерывное излучение, как того требует классическая теория. «Устойчивые» орбиты электронов соотносились с некоторыми фиксированными величинами энергии, каждая из которых была кратна основному кванту, при этом промежуточные орбиты отсутствовали, поскольку они требовали бы дробного значения энергии. Если продолжить аналогию с Солнечной системой, то это все равно что сказать, что земная орбита вокруг Солнца устойчива и орбита Марса тоже, но между ними невозможно существование ни одной другой устойчивой орбиты.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "В поисках кота Шредингера. Квантовая физика и реальность"

Книги похожие на "В поисках кота Шредингера. Квантовая физика и реальность" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Гриббин

Джон Гриббин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Гриббин - В поисках кота Шредингера. Квантовая физика и реальность"

Отзывы читателей о книге "В поисках кота Шредингера. Квантовая физика и реальность", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.