» » » » Борис Конрад - Как запомнить все! Секреты чемпиона мира по мнемотехнике


Авторские права

Борис Конрад - Как запомнить все! Секреты чемпиона мира по мнемотехнике

Здесь можно купить и скачать "Борис Конрад - Как запомнить все! Секреты чемпиона мира по мнемотехнике" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство ЛитагентАттикусb7a005df-f0a9-102b-9810-fbae753fdc93. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Как запомнить все! Секреты чемпиона мира по мнемотехнике
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Как запомнить все! Секреты чемпиона мира по мнемотехнике"

Описание и краткое содержание "Как запомнить все! Секреты чемпиона мира по мнемотехнике" читать бесплатно онлайн.



Почему мы что-то забываем? Каким образом можно выучить несколько языков и соединять в памяти совершенно не связанные вещи? Можно ли поумнеть с помощью мозговой разминки? Автор этой книги, многократный чемпион мира по мнемотехнике, дает вам уникальную возможность заглянуть в таинственный мир запоминания и забывания и расширить знания о человеческом мозге и памяти.

«Вы держите в руках книгу о памяти, на страницах которой она рассматривается под новым углом зрения. Естественно, что эта книга, кроме всего прочего, и о мозге – ведь память и мозг неотделимы друг от друга. Вы узнаете о том, как мозг создает память, о нервных клетках, хранящих симпатию к Дженнифер Энистон, а также о системах памяти, существование которых ограничивается лишь долями секунды. Вы узнаете, как именно мозг помогает нам что-то припомнить и действительно ли мы никогда и ничего не забываем. Вы научитесь оценивать состояние своей памяти и поймете, что надо делать, чтобы ее улучшить, и самое главное – когда стоит это делать. Кто захочет, тот сможет сотворить из своего мыслительного органа “супермозг”. Собственно, он уже и так у вас есть!» Борис Конрад






Синапс – это соединение двух нейронов. Здесь возбуждение передается с одной нервной клетки на другую. Этот процесс осуществляется нейротрансмиттером, в данном случае дофамином. Когда нейрон «разряжается», в аксоне возникает электрическое возбуждение (вверху). Содержащийся в пузырьках нейротрансмиттер выделяется в синаптическую щель – пространство, отделяющее аксон от дендрита следующей нервной клетки. На дендритах принимающего возбуждение нейрона расположены соответствующие рецепторы – молекулы, связывающиеся с нейротрансмиттером (в данном случае с дофамином). Если с рецепторами связывается достаточное количество молекул нейротрансмиттера, на этом месте возникает электрический сигнал. Неиспользованные молекулы медиатора снова захватываются аксоном или разрушаются


Эта основополагающая система возникла давно и присутствует у всех без исключения млекопитающих. Дофамин в качестве нейротрансмиттера работает в нервной системе практически всех животных. В эти процессы активно вмешиваются наркотические вещества, вызывающие зависимость. Например, кокаин препятствует обратному захвату дофамина в синапсах. Развивается чрезмерное возбуждение, приводящее к ощущению безмерного счастья и к повышенной работоспособности. Однако при переизбытке дофамина у рецепторов притупляется чувствительность к этому нейромедиатору. Нормального количества дофамина перестает хватать без дополнительного введения кокаина или амфетамина, что довольно быстро приводит к наркотической зависимости.

Влияние выброса дофамина на нейрон зависит также от типа его рецепторов, воспринимающих сигнал. Существует пять видов дофаминовых рецепторов, которые можно разделить на два класса: выделение дофамина в синапс сопровождается, в зависимости от типа рецепторов, возбуждением или торможением целевого нейрона. Происходит приблизительно то же, что в трудовом коллективе. Если шеф рычит на сотрудников, выдавая им свои ценные указания, и рык этот становится все более и более грозным, то это вызывает у сотрудников (рецепторов) разные реакции. Одного сотрудника это стимулирует. На другого не оказывает никакого действия, а третьего вгоняет в ступор. Результат: первый станет работать лучше, а второй и третий – нет. В конторе, кроме того, сидят и другие сотрудники, подчиняющиеся другому шефу. Они замечают, что количество медиатора (распоряжений) в конторе стало больше, но они, в силу ненадобности, на них не реагируют. Из этого многообразия медиаторов и рецепторов следует, что в зависимости от внешних условий вся нервная система в совокупности может обеспечивать целый спектр многообразных реакций. В целом считается, что глутамат и ГАМК обеспечивают быстрый и непосредственный обмен информацией, а такие медиаторы, как дофамин и серотонин, очень важны для медленных, касающихся всей нервной системы изменений. Например, они отвечают за спокойствие или, наоборот, повышение уровня бодрствования.

Помимо этого, синапсы играют важную роль в обучении! Почему и каким образом? Дело в том, что они могут менять свои свойства. Из исследований Кандела, проведенных на аплизиях, нам известно, что если непрерывно активировать один и тот же нейрон, то он в конце концов начнет выделять все меньше и меньше медиатора, что, естественно, приводит к уменьшению возбуждения следующего нейрона. Если же на фоне привычной стимуляции приходит какой-то другой сигнал, то синапсы начнут выделять больше медиатора. Такое происходит, например, в тех случаях, когда аплизии постоянно поглаживают чувствительные отростки, а затем внезапно наносят по хвосту удар током. После этого даже поглаживание приводит к усилению выделения медиаторов в синапсе и к сильным движениям хвоста – даже без всякого удара током. Эти изменения являются кратковременными: биохимические реакции меняются, но их прочного встраивания не происходит. Таким образом, в данном случае речь идет о кратковременной памяти. Однако при повторных или длительных раздражениях одного нейрона в мозге происходит реальная перестройка. Возникают новые точки контакта, начинается разрастание дендритов, укрепляются существующие соединения и возникают новые.

В поисках следов памяти

Сто лет назад ученые, изучавшие мозг, считали, что память хранится в мозге в закодированном виде. Если мы чему-то научились и в результате изменилось строение мозга, то в нем непременно должны остаться следы приобретенного знания. Эти гипотетические следы были названы энграммами. Много сил было потрачено на их поиск и обнаружение. Но, несмотря на все усилия, эти изменения не были найдены ни в одном участке головного мозга. Как мы усвоили из предыдущей главы, мозг постоянно изменяется в процессе обучения. Одно-единственное запоминание приводит ко многим изменениям, так как по ходу его происходит активация множества нейронов. Значит, след памяти надо искать в специфической последовательности переноса возбуждения.

Например, путешествие в Париж способно активировать множество систем памяти. Представьте себе, что вы стоите вместе с возлюбленной на Эйфелевой башне. От одного этого у вас в мозге происходит активация множества нервных клеток: одни обрабатывают эмоции, другие обеспечивают данными автобиографическую память, третьи важны для формирования семантической памяти, где откладывается такая важная для викторин информация, как, например, то, что высота Эйфелевой башни – 324 метра. Если же вы поцелуете возлюбленную, то забудете обо всем на свете. Чувственность захлестывает вас обоих, вы закрываете глаза и не замечаете, как карманный воришка вытаскивает из вашего кармана бумажник. Ах, о чем это я… рассказывая впоследствии дома обо всем увиденном и пережитом в Париже, вы снова включаете сходные нейронные сети и заново переживаете романтические моменты, поцелуй и свой взволнованный рассказ в полицейском участке.

Особые клетки головного мозга

Один нейрон не способен хранить информацию, он может лишь передавать импульсы. Воспоминание – это всегда цепь и последовательность возбуждений. Однако, несмотря на это, существуют отдельные нейроны, которые совершают удивительные вещи! Например, есть клетки, которые называют «нейронами места» или «нейронами решетки». В 2014 году эти клетки получили Нобелевскую премию. Ну, конечно, не они сами, а нейрофизиологи Джон О’Кифи, Мэй Бритт Мозер и Эдвард Мозер, открывшие эти клетки. Бабушкин нейрон – это скорее модель, нежели настоящая нервная клетка. Напротив, нейроны Дженнифер Энистон кажутся настоящими, хотя это уже другая история.

Изучать то, как отдельные нейроны реагируют на определенные мысли, трудно. Для наблюдения за нейронами и их поведением нам пришлось бы извлечь мозг из черепной коробки, но такой мозг не способен мыслить. То есть изучать надо живой мозг. Это правда, что современные методы наружного исследования не позволяют исследовать на живом мозге поведение отдельных нейронов. Для этого надо ввести электроды в ткань мозга, но интактный мозг между тем надежно защищен от взлома сводом черепа. Поэтому исследования, удостоенные в 2014 году Нобелевской премии, были проведены на животных. Ученые наблюдали за ходом возбуждения в отдельных нейронах гиппокампа (области мозга, о которой мы еще будем говорить ниже) крысы. При этом ученые установили, что существуют определенные нейроны, которые всегда активировались, когда животное находилось в определенном месте своего пути. Животное перемещалось по клетке свободно, и нейроны возбуждались независимо от направления, в котором животное бежало, оказываясь в определенном месте. Как только крыса оказывалась в топографическом поле данного нейрона, он тотчас же разряжался. Разряд не зависел от временных параметров, но только и исключительно от места. Эти специализированные нейроны были названы авторами «place cells», то есть клетками места. Так, впервые стало понятно, как мозг учится оценивать, в каком месте пространства он находится.

Однако эти клетки, или нейроны места, не привязаны к GPS-координатам. Во-первых, каждая клетка реагирует на определенное поле, а не на точку. Когда животное исследует лабиринт со множеством отсеков, нервная клетка реагирует на весь отсек, а не на положение животного в нем. Во-вторых, при исследовании другого окружения активируются те же нервные клетки. Интересно наблюдать, как изменяются при этом поля, на которые реагирует одна клетка. Если клетка разряжается в квадратном боксе в нижнем левом углу, то она же разряжается в продолговатом прямоугольном боксе тоже именно в нижнем левом углу. Если после этого поместить крысу на стол, не имеющий стен, но ограниченный своими краями, то и на нем клетка разряжается в нижнем левом углу. Таким образом, важна ориентация границ доступного животному пространства. Кроме того, поля накладываются друг на друга, поэтому, хотя на первый взгляд и кажется, что каждая клетка обладает своим полем, на самом деле точное местоположение поля закодировано в активности множества нейронов. Так как поля этих клеток варьируют, то одного этого механизма недостаточно для того, чтобы точно кодировать местоположение.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Как запомнить все! Секреты чемпиона мира по мнемотехнике"

Книги похожие на "Как запомнить все! Секреты чемпиона мира по мнемотехнике" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Борис Конрад

Борис Конрад - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Борис Конрад - Как запомнить все! Секреты чемпиона мира по мнемотехнике"

Отзывы читателей о книге "Как запомнить все! Секреты чемпиона мира по мнемотехнике", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.