» » » Минас Кафатос - Ты – Космос. Как открыть в себе вселенную и почему это важно


Авторские права

Минас Кафатос - Ты – Космос. Как открыть в себе вселенную и почему это важно

Здесь можно купить и скачать "Минас Кафатос - Ты – Космос. Как открыть в себе вселенную и почему это важно" в формате fb2, epub, txt, doc, pdf. Жанр: Образовательная литература, издательство ЛитагентОДРИ3a170292-35e8-11e5-b72e-002590591dd6, год 2017. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Минас Кафатос - Ты – Космос. Как открыть в себе вселенную и почему это важно
Рейтинг:
Название:
Ты – Космос. Как открыть в себе вселенную и почему это важно
Издательство:
неизвестно
Год:
2017
ISBN:
978-5-699-99523-3
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Ты – Космос. Как открыть в себе вселенную и почему это важно"

Описание и краткое содержание "Ты – Космос. Как открыть в себе вселенную и почему это важно" читать бесплатно онлайн.



Вы и Вселенная – единое целое. Осознайте это – и измените жизнь к лучшему.

Духовный лидер современности Дипак Чопра и физик Минас Кафатос познакомят вас с концепцией новой, Человеческой Вселенной, не имеющей ничего общего с холодной пустотой "научного" космоса. Вы сможете получить ответы на важнейшие вопросы мироздания и узнаете, как изменить мир к лучшему.

Новая концепция живой и сознательной Вселенной способна ответить на вопросы, перед которыми ученые по-прежнему бессильны:

[ul]Что было до Большого взрыва;

Почему Вселенная настолько совершенна;

Откуда взялось время;

Как возникла жизнь;

Какая роль во Вселенной отведена человечеству.[/ul]






Ведущим примером является теория струн, которая позже трансформировалась в теорию суперструн, поскольку ее амбиции расширились. Теория струн возникла, чтобы решить загадку того, как элементарные частицы, такие как фотоны, кварки и электроны, могут вести себя как частицы и волны одновременно. Как мы увидим позже, многие физики назвали эту проблему центральной для квантовой механики. Частица похожа на теннисный мяч, пролетающий над сеткой.

Волна похожа на закрученный воздух, который она оставляет на своем пути. Они не похожи друг на друга. Однако если теннисный мяч и закрученный воздух могут быть сведены к одному общему признаку, это может решить проблему.

Теория струн говорит, что такой общий признак – вибрации. Представьте себе скрипку, вибрирующую для создания музыкальных нот. Звучание ноты определяется тем, где скрипач прикладывает палец к струне. Подобным же образом теория струн рассматривает волны как вибрацию невидимой струны, причем частицы являются специфическими «нотами», которые появляются в пространстве-времени. Аналогия с музыкой сильна, поскольку субатомные «гармонии» (вибрации, которые резонируют друг с другом), как полагают, определяют, как относятся друг к другу кварки, бозоны, такие как фотоны и гравитоны, и другие конкретные частицы, и создают сложные структуры, точно так же, как двенадцать нот западной музыкальной гаммы превратились в тысячи симфоний, сонат и тому подобных произведений. Нет конца комбинациям, создаваемым двенадцатью нотами; так и несколько вибрирующих струн могут быть основой для смутного распространения субатомных частиц, обнаруженных в ускорителях высокоскоростных частиц.

Скептики отмечают, что струны, вибрирующие ниже уровня наблюдаемой реальности, могут быть плодами воображения. Но для математиков теория струн имела большую привлекательность, потому что она относится к чистой математике. Передовая модель, известная как теория суперструн, увеличила сложность необходимых уравнений. Сначала было пять моделей суперструн, которые выглядели по-разному, но в середине 1990-х годов им было показано, что они имеют тонкое комплексное сходство. То, что стало вершиной математического моделирования, оказалось М-теорией, где М может означать, по словам чудаковатого создателя теории Эдварда Виттена, и волшебство (magic), и тайну (mystery), и мембрану.

«Волшебство» и «тайна» относятся к тому факту, что М-теория не имеет в основе ни одного эксперимента или наблюдения. Она вытаскивает математического кролика из шляпы, гармонизируя предыдущие теории струнного типа, которые сами по себе не были основаны на экспериментах или наблюдениях. Тот факт, что М-теория так хорошо работает – на бумаге, – кажется магическим и таинственным. Конечная уловка состоит в том, чтобы показать, что Вселенная действительно работает так, как она работает на бумаге, и никто ее не оттолкнет. Третье значение – «мембрана» – технический термин физиков для описания того, как некоторые квантовые объекты распространяются через пространство, например листы или вибрирующие мембраны, а мембраны суть обобщения струн в более высоких измерениях. Здесь мы балансируем на краю очень сложных уравнений, которые можно понять только через высшую математику. Но концептуальную основу дать все же можно.

Куда все ушло?

Как реальность стала настолько загадочной, что ее понадобилось сводить к цифрам? Никто не виноват, что Вселенная исчезла у нас под носом. Физика – это физичность, но, как мы видели, в квантовой революции физичность исчезла. Мы говорим о простой, базовой физичности, о том, что пять чувств позволяют нам переживать, когда кто-то пинает камень и ему тяжело. Тонкая физичность оставалась в форме субатомных частиц и волн, предметов изучения квантовой физики. Но два связанных препятствия не могли быть преодолены.

Первое препятствие, о котором мы говорили ранее, связано с несовместимостью больших и малых объектов. Общая теория относительности Эйнштейна великолепно работает с крупными объектами, такими как планеты, звезды и галактики и сама Вселенная. Благодаря своему пониманию гравитации и искривленности космического времени, относительность принимается как обеспечивающая глубочайшее понимание чего-либо макроскопического и крупного масштаба самой Вселенной. С другой стороны, квантовая механика (КМ) столь же успешно описывает мельчайшие объекты в природе, особенно субатомные частицы. Но общая теория относительности и КМ не зацеплялись с тех пор, как были сформулированы. Каждая из теорий делает точные прогнозы внутри своей собственной области; можно провести эксперименты или наблюдения. Но найти связь между самыми большими и самыми маленькими объектами во Вселенной – чрезвычайно сложно.

Второе препятствие возникает из дилеммы, заключенной в первом. Как только было установлено, что в природе есть четыре фундаментальные силы, то есть гравитация, электромагнитная сила, сильное и слабое ядерное взаимодействие, – появилась и возможность объединить их в одну теорию. К концу 1970-х годов с открытием кварков возникла стандартная модель, которая объединила квантовый мир на трех фронтах. Сила, ответственная за свет, магнетизм и электричество (электромагнетизм), была объединена с двумя силами, которые удерживают атомы вместе (сильное и слабое ядерные взаимодействия). Мир крошечных предметов сдался математическому соответствию. Этот шаг был известен как Великое объединение, и с учетом того, сколько блестящих умов внесло свой вклад в это, объединив три фундаментальные силы, объединение и вправду можно назвать великим. Оставалась только гравитация, чтобы завершить эту «теорию почти всего» и приблизиться к святому Граалю – к Теории Всего. По аналогии, представьте себе, что кто-то собирает мозаику из статуи Свободы. Все части находятся на месте, но факела нет. Этот кусочек отсутствует в коробке, и вот начинаются поиски.

«Не волнуйся, – говорят нам, – это всего лишь кусочек. Как только мы найдем его, вся картина будет полной. Мы почти пришли».

Тем не менее, независимо от того, как трудно каждому искать, недостающий кусок найден быть не может. А когда возвращаешься к загадке, определенной картины статуи Свободы, к сожалению, уже нет: вместо нее – расплывчатые очертания, окруженные густым туманом.

Теперь вы видите, почему современная физика делится на два лагеря. Один считает, что картина Вселенной почти завершена: нет только одной части, которая, если все время искать, непременно найдется. Другой лагерь считает, что нехватка фрагмента делает всю картину неопределенной и сомнительной. Мы могли бы также назвать эти лагеря «количественным» (его идея – «нужно построить самый большой ускоритель, создать более мощные телескопы, делать больше вычислений, тратить больше денег…») и «качественным» (идея – «начать следует с новой модели Вселенной»). «Количественный» лагерь считает, что опирается на практику и прагматизм. Мантра «количественных» – «Заткнитесь и считайте!»: по их мнению, любое дополнительное теоретизирование – всего лишь ненужные предположения.

Чтобы в конце концов победить, «количественным» придется докопаться до самых упрямых частиц из самой глубокой квантовой ткани. Только тогда их расчеты будут оправданны. Пока что прогнозы оптимистичны, особенно после того, как в 2012 году была открыта одна из самых важных этих частиц – бозон Хиггса. Мы упоминали, что квантовый вакуум кишит субатомными частицами. Некоторые из них настолько неуловимы, что их выявление требует огромных технических мощностей, то есть все более крупных и дорогих ускорителей. Если бомбардировать атом сверхвысокой энергией, квантовый вакуум иногда «выталкивает» новый тип частицы. Это тонкая, кропотливая работа, но обнаруженные частицы доказывают, что существующие теории действительно верны. Существование бозона Хиггса было предсказано; таким образом, его открытие, будучи подтверждено, показывает, что стандартная модель соответствует реальности. Функция бозона Хиггса состоит в том, чтобы придать массу другим флуктуациям в квантовом поле. Технический момент, на котором не стоило бы останавливаться, не будь эта функция основой существования всех созданных физических объектов.

СМИ зациклились на определении «частица Бога», которое смущает почти всех физиков. Для них открытие бозона Хиггса было триумфом: оно заполнило пробел на месте одной из последних оставшихся фундаментальных частиц, факел статуи Свободы нашелся, теоретическая картина почти завершена. Поиск последней недостающей части занял пять десятилетий – начиная с того дня, когда британский физик Питер Хиггс и его коллеги первыми предложили существование так называемого поля Хиггса.

Новое открытие вписывается в привычные образцы. История современной физики – торжественный парад доказанных результатов вперемешку с теоретическими выкладками. Бозон Хиггса может быть важным звеном в понимании того, как связаны четыре фундаментальные силы, но на этом парад может и кончиться: включение гравитации в систему может быть невозможным, если мы все еще говорим о подтверждении. Гравитон, теоретическая частица, которая выскакивает из поля тяготения при его возбуждении, далека от того, чтоб ее наблюдать или хотя бы иметь такую возможность. Одно из препятствий – чисто техническое. Ускорение и энергия, необходимые, чтобы приблизить нас к истокам физической реальности, огромны. По некоторым оценкам, ускоритель, способный выполнить эту работу, должен быть больше, чем окружность Земли.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Ты – Космос. Как открыть в себе вселенную и почему это важно"

Книги похожие на "Ты – Космос. Как открыть в себе вселенную и почему это важно" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Минас Кафатос

Минас Кафатос - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Минас Кафатос - Ты – Космос. Как открыть в себе вселенную и почему это важно"

Отзывы читателей о книге "Ты – Космос. Как открыть в себе вселенную и почему это важно", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.