» » » » Р. Байтасов - Основы энергосбережения. Конспект лекций


Авторские права

Р. Байтасов - Основы энергосбережения. Конспект лекций

Здесь можно купить и скачать "Р. Байтасов - Основы энергосбережения. Конспект лекций" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство ЛитагентРидеро78ecf724-fc53-11e3-871d-0025905a0812. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Основы энергосбережения. Конспект лекций
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Основы энергосбережения. Конспект лекций"

Описание и краткое содержание "Основы энергосбережения. Конспект лекций" читать бесплатно онлайн.



В учебном пособии рассмотрены основные принципы энергосбережения. Дано общее представление о традиционных и альтернативных источниках энергии. Рассмотрены основные мероприятия по снижению энергопотребления. Предназначается для студентов экономических специальностей






Гравитационная энергия – энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасённая» телом, поднятым на определённую высоту над поверхностью Земли – энергия силы тяжести.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.

Одним из критериев оценки качества энергии принимается доля энергии источника, которая может быть превращена в механическую работу.

Источники энергии имеют следующие ориентировочные значения этого критерия:

– теплота сжигаемого топлива – 30—45%;

– электроэнергия – 95% и более;

– источники механической энергии: ветровая – 30%, водных потоков рек – 60%, волновая и приливная – 65%;

– тепловые возобновляемые источники – 35%;

– фотоэлектрические преобразователи – 15%.

1.3 Способы получения тепловой и электрической энергии

Человечеству известно 16 видов энергии (табл. 1.1)


Таблица 1.1 Классификация видов энергии, охватывающая все варианты энергетических превращений в природе



Для производственной деятельности и бытовых нужд люди используют в основном только четыре вида энергии (табл. 1.2)


Таблица 1.2 Виды энергии, непосредственно необходимые для жизни и деятельности человечества



Причём наибольшая потребность существует в тепловой энергии – 75% от всех энергозатрат. Доля световой энергии и электрической в чистом виде (в электротехнологии, электротерапии, в информационных системах) составляет не более 1%. В основном электрическая энергия преобразуется в другие виды – механическую, тепловую, световую (электромагнитную).

Электроэнергия является одним из наиболее совершенных видов энергии. Её широкое использование обусловлено следующими преимуществами:

– возможность выработки в местах сосредоточения ТЭР;

– удобство транспортирования на большие расстояния;

– хорошая трансформируемость в другие виды энергии (механическую, тепловую, химическую, световую);

– экологичность;

– делимость;

– возможность применения новых прогрессивных технологических процессов с высокой степенью автоматизации.

К недостаткам, присущим электрической энергии, следует отнести повышенную опасность и сложность аккумулирования.

Механическая энергия получается путём преобразования электрической энергии в электрических машинах (электродвигателях) или в тепловых машинах (двигателях внутреннего сгорания, паровых турбинах), использующих химическую энергию топлива. Для получения механической энергии издавна использовались также машины и механизмы, преобразующие энергию падающей воды или ветра.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Электрическая и тепловая энергия производится:

– на тепловых электрических станциях (ТЭС) и теплоцентралях (ТЭЦ) на углеводородном топливе с использованием в турбинах водяного пара (паротурбинные установки – ПТУ), энергии газов, образующихся в результате горения топлива (газотурбинные установки – ГТУ), а также с комбинированным использованием тепловой и потенциальной энергии газов и пара (парогазовые установки ПГУ);

– на гидравлических электрических станциях (ГЭС), использующих энергию падающего потока воды, течения, прилива (на море);

– на атомных электрических станциях (АЭС), использующих энергию ядерного распада;

– в котельных различной мощности, вырабатывающих только тепловую энергию.

Конденсационные ТЭС производят только электроэнергию (они называются также ГРЭС – государственные районные электростанции). Теплоцентрали (ТЭЦ) – электрические станции с комбинированной выработкой электрической и тепловой энергии.

Упрощенная схема производства электрической энергии на ТЭС, работающей на органическом топливе, приведена на рис. 1.1.


Рис.1.1 Структурная схема ТЭС


При сгорании органического топлива, подаваемого в котёл, химическая энергия топлива преобразуется в тепловую, за счёт которой образуется пар высокого давления (10…14 МПа) с температурой свыше 500˚С. Пар поступает на паровую турбину. Турбина, представляющая собой ротационный тепловой двигатель лопаточного типа, преобразует энергию пара в механическую энергию вращения ротора турбины, которая передаётся электрогенератору, вырабатывающему электроэнергию. Отработанный в турбине пар подаётся в конденсатор, где охлаждается и конденсируется, отдавая тепло охлаждающей воде, поступающей из охладителя. В качестве охладителей используют градирни, пруды-охладители или естественные водоёмы – озёра, реки, водохранилища. Образующийся конденсат откачивается из конденсатора и подаётся обратно в котёл, где компенсирует расход воды на парообразование.

Энергетическая эффективность ТЭС, оцениваемая коэффициентом полезного действия (КПД), определяемым как отношение выработанной электроэнергии к энергии затраченного топлива, составляет 35…40%. Основные потери тепловой энергии в ТЭС – это теплота продуктов сгорания, выбрасываемая в атмосферу и теплота, выделяющаяся при конденсации отработанного пара в охладителе.

ТЭЦ вырабатывают и отпускают потребителям электроэнергию и тепловую энергию в виде пара и горячей воды для производственных нужд и коммунально-бытового потребления. При такой комбинированной выработке тепловой и электрической энергии в тепловые сети отдаётся теплота отработавшего в турбинах пара. Это обеспечивает снижение расхода топлива на 25…30% по сравнению с раздельной выработкой электроэнергии на ТЭС и теплоты в районных котельных. Общий КПД ТЭЦ составляет 60…70%. Упрощенная схема ТЭЦ приведена на рис. 1.2


Рис. 1.2 Схема ТЭЦ с производственным отбором пара и теплофикационным отбором горячей воды


Поскольку для производственных и бытовых нужд требуются пар и вода в относительно широком диапазоне температур и давлений, на ТЭЦ применяются теплофикационные турбины различных типов. На рис. Показана схема ТЭЦ с турбинами с отбором пара. В таких турбинах часть пара с достаточно высокими температурой и давлением отбирается из промежуточных ступеней и направляется на производство, откуда в котёл через питательный бак возвращается конденсат. Остальной отработанный пар с выхода турбины направляется в теплообменник, где конденсируется и также возвращается в питательный бак и в котёл. Теплота конденсации применяется для подогрева воды, используемой в системе горячего водоснабжения и отопления. На современных ТЭЦ наиболее распространены турбины с отбором пара.

В последнее время на ТЭЦ устанавливают парогазовые установки (ПГУ) с комбинированным (бинарным) циклом. Образующиеся в результате горения топлива в потоке сжатого воздуха газы направляются сначала на газовую турбину, где, расширяясь, совершают механическую работу, а затем теплота отработанных турбиной газов используется на образование пара в котле. Далее процесс протекает аналогично приведённой схемы на рис. 1.1. Совместная работа газовой и паровой турбин позволяет увеличить производство электрической энергии и повысить КПД ТЭЦ до 80% и более.

Районные котельные предназначены для централизованного теплоснабжения промышленности и жилищно-коммунального хозяйства, а также для покрытия пиковых тепловых нагрузок в теплофикационных системах. Они проще и дешевле, чем ТЭЦ той же тепловой мощности. Поэтому во многих случаях теплофикацию районов начинают со строительства районных котельных. До ввода в работу ТЭЦ эти котельные являются основным источником теплоснабжения района. После ввода ТЭЦ эти котельные используются в качестве пиковых.

Районные котельные сооружают на площадках ТЭЦ или в районах теплоснабжения. В них устанавливают водогрейные котлы (при работе на газе) или паровые котлы низкого давления – до 2,4 МПа (при работе на мазуте или твёрдом топливе).

АЭС по структуре аналогична ТЭС (см. рис.1.1). Основное отличие состоит в использовании ядерного ректора вместо котла на химическом топливе. Ядерное топливо обладает высокой теплотворной способностью – в миллион раз выше, чем органическое. В одном грамме урана содержится 2,6 х 10²¹ ядер, при делении которых может выделиться 2000 кВт-ч энергии, что эквивалентно сжиганию более 2000кг угля. В этой связи расходы на транспортировку топлива для АЭС сводятся к минимуму.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Основы энергосбережения. Конспект лекций"

Книги похожие на "Основы энергосбережения. Конспект лекций" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Р. Байтасов

Р. Байтасов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Р. Байтасов - Основы энергосбережения. Конспект лекций"

Отзывы читателей о книге "Основы энергосбережения. Конспект лекций", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.