» » » » Марина Рабинович - Неоткрытые открытия, или Кто это придумал?


Авторские права

Марина Рабинович - Неоткрытые открытия, или Кто это придумал?

Здесь можно купить и скачать "Марина Рабинович - Неоткрытые открытия, или Кто это придумал?" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство ЛитагентКлуб семейного досуга7b51d9e5-dc2e-11e3-8865-0025905a069a. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Неоткрытые открытия, или Кто это придумал?
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Неоткрытые открытия, или Кто это придумал?"

Описание и краткое содержание "Неоткрытые открытия, или Кто это придумал?" читать бесплатно онлайн.



Все мы со школьной скамьи знаем, что Колумб открыл Америку, Кук – Австралию, а Ньютон – автор трех знаменитых законов. Это аксиома. Но истории известен феномен «множественного открытия», когда изобретателя по каким-то причинам забывали, а его открытие приписывали другому человеку. Эта книга расскажет, кто на самом деле открыл Америку, нашел вакцину от полиомиелита, изобрел радио, телефон, электронное телевидение и паровоз, кто автор метода решения кубических уравнений и периодической системы химических элементов…






В 1789 году Уильям Хиггинс опубликовал работу, в которой высказал предположение о существовании связей между мельчайшими частицами вещества, однако представление о химической связи атомов в молекуле, по сути, отсутствовало вплоть до середины XIX века. Собственно говоря, отсутствовало и само атомно-молекулярное учение, оно было лишь одной их гипотез, которую многие химики подвергали сомнению. Тем не менее уже тогда существовали химические формулы и уравнения, в той или иной мере отражавшие определенные превращения веществ. Что же это были за формулы и как их составляли, ведь атомы и молекулы еще считались чем-то потусторонним, недоступным для непосредственного изучения?

Основой для формулы вещества был его элементарный состав. Известно, например, что вода состоит из водорода и кислорода, причем их весовое отношение в воде – 1:8. Во всех соединениях, где обнаруживался водород, на его долю всегда приходился наименьший весовой «пай». Весовое содержание других элементов всегда было больше. Если вместо водорода в вещество вводился другой элемент, то «пайный» вес этого элемента также оказывался значительно большим, чем вес замещенного им водорода. «Пайный» вес водорода в воде был принят за единицу, а весовое количество любого другого элемента, способного соединяться с «паем» водорода в воде, стали выражать в этих единицах. Если в воде кислорода в восемь раз больше, чем водорода, значит, «пайный» вес кислорода равен 8.

Количество какого-либо другого элемента, соединяющееся с весовым «паем» водорода в воде или, что аналогично, с одним «паем» кислорода, равным 8, называли «пайным» (или эквивалентным) весом этого элемента. Закон простых кратных отношений был своего рода «квантовой теорией» химии XIX века: элементы соединяются друг с другом определенными порциями, что и приводит к их целочисленным весовым отношениям. Эквивалентные веса и были этими «квантами» (порциями), вступающими в химическое соединение.

Каждый элементарный «пай» обозначался символом соответствующего элемента – Н, О и т. п. В воде, по условию, на один «пай» водорода приходился один «пай» кислорода. Отсюда давняя формула воды – НО. Долгое время для углерода принимался «пайный» вес 6, и формула метана писалась в виде С2Н4. Сто с небольшим лет назад химические формулы многих веществ имели столь же странный и непривычный для нас вид (Н5 – сероводород, КО + НО – едкий калий и т. п.).

Не надо считать эти формулы абсурдными: определенную часть истинно химического смысла они все же отражали – элементарный состав вещества, весовое соотношение входящих в него элементов. Современному читателю легко заметить, что «пайные» веса углерода (6), кислорода (8), азота (7), серы (16) равны половине их атомных весов, принятых сегодня. Однако в то время истинный атомный вес определять не умели. Если элементы и называли «атомами», то лишь подразумевая под этим некоторое минимальное количество элемента, вступающее в химическое соединение.

Основой для дальнейшего движения вперед послужило развитие представлений о химической частице (молекуле) и окончательное принятие большинством химиков атомно-молекулярного учения. В связи с этим был сформулирован важнейший для химии вопрос: сколько атомов того или иного сорта способен присоединять к себе данный атом и является ли это число постоянным, характерным для рассматриваемого элемента?

Ответить на этот вопрос было бы не так трудно, если бы различные элементы всегда соединялись друг с другом только в строго постоянных отношениях. Однако сплошь и рядом эта столь желанная простота не обнаруживалась. К примеру, многие металлы образуют по два, а то и по три различных соединения с кислородом, а азот дает их целых пять. Это же свойство многие элементы проявляют и в соединениях с хлором, серой, водородом и т. д. В бесконечном множестве соединений углерода вообще с трудом можно отыскать закон кратных отношений: он соединяется с другими элементами в самых причудливых и далеко не всегда простых отношениях.

Но вот в 1849 году 23-летний английский химик Эдуард Франкленд открывает новый класс органических соединений, в которых атомы металла связаны с простейшими остатками органических молекул – радикалами (метилом, этилом и т. п.). Сначала он получил органические соединения цинка, затем – ртути, бора, олова, свинца. Новые соединения обладали удивительными, совершенно новыми свойствами и привлекли к себе общее внимание, к тому же число их быстро росло.

Уже в 1853 году Франкленд обнаружил одно любопытное явление. Он заметил, что каждый металл, для которого были известны соединения с органическими радикалами, образует только одно соединение этого типа. В летучих, то есть способных к перегонке металлоорганических соединениях, цинк и ртуть всегда соединяются только с двумя метальными радикалами, бор – с тремя, олово и свинец – с четырьмя. Сразу же возникла мысль, что именно эти числа характеризуют способность элементов к соединению друг с другом. Сопоставляя свои наблюдения с материалом, накопленным неорганической химией, Франкленд впервые выдвинул утверждение, что каждому элементу присуще лишь определенное количество «единиц сродства», при помощи которых атомы соединяются в молекулу.

Победа атомистического учения и определение точных атомных весов углерода и кислорода, выполненное Станислао Канниццаро в 1858 году, вскоре позволили придать более совершенную формулировку первоначальной мысли Франкленда. А именно: «Валентность – это свойство атомов одного элемента присоединять определенное число атомов других элементов. За единицу измерения валентности принята валентность водорода».

В 1858 году шотландский химик Арчибальд Скотт Купер своими исследованиями создал базу для формирования теории химического строения органических соединений. В этом году он публикует статью «О новой химической теории», в которой высказывает новые идеи о строении органических веществ. Идеи Купера развивали представления Эдуарда Франкленда о «соединительной силе» элементов. Купер использовал термины «сродство элементов» в значении «способность атомов элемента избирательно соединяться с атомами других элементов», а также «степень сродства» – собственно количественная мера сродства.

По Куперу, элементы обладают сродством к другим элементам, а соединения образуются в соответствии с этим сродством. Высшая степень сродства углерода равна 4, то есть на один атом углерода может приходиться до четырех атомов водорода, хлора и подобных элементов. Важным было утверждение Купера о способности атомов углерода соединяться друг с другом, образуя цепи. Для ряда веществ Купер также предложил формулы, в которых сродство атомов было показано черточками.

Однако, будучи теоретиком, при составлении своих формул Купер не опирался на их экспериментальное обоснование. Порядок соединения атомов он выводил из формальных умозрительных представлений о «единицах сродства» разных элементов. Вопрос об экспериментальном подтверждении правильности формул Купер даже не ставил. Поэтому, строго говоря, утверждения Купера нельзя считать теорией в современном значении этого слова.

Решающую роль в создании теории валентности сыграл Фридрих Август Кекуле. В 1857 году он показал, что углерод является четырехосновным (четырехатомным) элементом и его простейшим соединением является метан СН4. Уверенный в истинности своих представлений о валентности атомов, Кекуле ввел их в свой учебник органической химии: основность, по мнению автора, – фундаментальное свойство атома, такое же постоянное и неизменяемое, как и атомный вес.

Уже три года спустя, в сентябре 1861 года, в теорию валентности вносит важнейшие дополнения А. М. Бутлеров. Проведя четкое различие между свободным атомом и атомом, вступившим в соединение с другим, когда его сродство «связывается и переходит в новую форму», Бутлеров вводит представление о полноте использования сил сродства и о «напряжении сродства», то есть энергетической неэквивалентности связей, которая обусловлена взаимным влиянием атомов в молекуле. В результате этого взаимного влияния атомы, в зависимости от их структурного окружения, приобретают различное «химическое значение». Теория Бутлерова позволила дать объяснение многим экспериментальным фактам, касавшимся изомерии органических соединений и их реакционной способности.

Несомненным достоинством теории валентности явилась возможность наглядного изображения молекулы. В 1860-х годах появляются первые молекулярные модели.

Уже в 1864 году А. Браун предложил использовать структурные формулы в виде окружностей с помещенными в них символами элементов, соединенных линиями, обозначающими химическую связь между атомами; количество линий соответствовало валентности атома. В 1865 году А. фон Гофман продемонстрировал первые шаростержневые модели, в которых роль атомов играли крокетные шары, а в 1866-м в учебнике Кекуле появились рисунки стереохимических моделей, в которых атом углерода имел форму тетраэдра.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Неоткрытые открытия, или Кто это придумал?"

Книги похожие на "Неоткрытые открытия, или Кто это придумал?" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Марина Рабинович

Марина Рабинович - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Марина Рабинович - Неоткрытые открытия, или Кто это придумал?"

Отзывы читателей о книге "Неоткрытые открытия, или Кто это придумал?", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.