» » » Алексей Благирев - Big data простым языком


Авторские права

Алексей Благирев - Big data простым языком

Здесь можно купить и скачать "Алексей Благирев - Big data простым языком" в формате fb2, epub, txt, doc, pdf. Жанр: comp_db, издательство Литагент АСТ, год 2019. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алексей Благирев - Big data простым языком
Рейтинг:
Название:
Big data простым языком
Издательство:
неизвестно
Жанр:
Год:
2019
ISBN:
978-5-17-111829-7
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Big data простым языком"

Описание и краткое содержание "Big data простым языком" читать бесплатно онлайн.



Наш телефон знает о нас больше, чем мы думаем. Он умеет собирать и анализировать информацию о том, как мы передвигаемся по городу, какие посты лайкаем и какими приложениями пользуемся. Он сообщит о пробках и поторопит на работу, чтобы мы не опоздали; подберет музыку под наше настроение и составит список персональных рекомендаций, чем можно занять себя в течение дня. Телефон – больше не устройство, по которому звонят, это уже средство управления окружающим нас миром. Незаметно мы окружили себя такими интерфейсами, которые создают невидимый барьер между человеком и окружающей средой. Планирование, управление, коммуникация, все теперь строится через эти программы и девайсы. Даже человеческие отношения. Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.





b. Data Entry – генерация данных ручным вводом, при помощи мобильных устройств или программного обеспечения;

c. Signal Reception – получение данных с помощью телеметрии (интернет-вещей).

2. Data Maintenance – передача данных в точки, где происходит синтез данных и их использование в форме, наиболее подходящей для этих целей. Она часто включает в себя такие задачи, как перемещение, интеграция, очистка, обогащение, изменение данных, а также процессы экстракции-преобразования-нагрузки;

3. Data Synthesis – создание ценности из данных через индуктивную логику, использование других данных в качестве входных данных.

4. Data Usage – применение данных как информации для задач, которые должно запускать и выполнять предприятие. Использование данных имеет специальные задачи управления ими. Одна из них заключается в выяснении того, является ли законным использование данных в том виде, в котором хочет бизнес. Это называется «разрешенным использованием данных». Могут существовать регулирующие или контрактные ограничения на то, как фактически можно использовать данные, а часть роли управления данными заключается в обеспечении соблюдения этих ограничений.

5. Data Publication – отправка данных в место за пределами предприятия. Примером может служить брокеридж, который отправляет ежемесячные отчеты своим клиентам. После того, как данные были отправлены за пределы предприятия, де-факто невозможно их отозвать. Неверные значения данных не могут быть исправлены, поскольку они уже недоступны для предприятия. Управление данными может потребоваться, чтобы помочь решить, как будут обрабатываться неверные данные, которые были отправлены инвесторам.

6. Data Archival – копирование данных в среду, где они хранятся, до тех пор, пока не понадобятся снова для активного использования и удаления из всех активных производственных сред.

7. Data Purge – удаление каждой копии элемента данных с предприятия. В идеале это необходимо делать из архива, так как реализация задачи управления данными на этом этапе жизненного цикла данных определит, что очистка действительно была выполнена должным образом.

При работе с описанной моделью стоит отметить важные допущения:

• «Жизненный путь» – не совсем корректный термин, потому что данные сами себя не воспроизводят, более близкое значение – «история данных», но предлагается его не менять, из-за того, что текущего значения придерживается большинство участников рынка.

• Данные не обязательно должны проходить все семь фаз взаимодействия.

• Фазы взаимодействия не обязательно выстраиваются в конкретную последовательность. В реальности фазы могут проявляться в хаотичном порядке.

• Часть профессионального сообщества так же использует аббревиатуру ILM (Information Lifecyle Management). Разница[23] между двумя понятия состоит в следующем:



Иными словами, по одной из версий управление данными является подмножеством цикла управления информацией, а сами подходы по управлению информацией уже являются подходами по управлению знаниями (Knowledge Management) в организации.

Но стратегия управления данными сама по себе является самостоятельным звеном в этой сложной цепочке. Поэтому, даже не рассматривая всю цепочку управления знаниями, можно с уверенностью сказать, что стратегия управления данными несет в себе самостоятельную ценность.

Утомил? А представьте, что в этом всем копается множество людей, которые в буквальном смысле спорят о дефинициях, правилах и отношениях.

Миссия компании и данные

Итак, при построении стратегии, вслед за определением ключевых точек работы с данными, обычно выбирается традиционный путь создания и разработки любой стратегии:

• Определение стратегической позиции – ответ на несколько ключевых позиций во внутреннем и внешнем окружении компании (с точки зрения регулятора, конкурентов, ресурсов и так далее), в том числе декомпозиция и интеграция миссии и ключевых факторов успешности;

• Определение стратегического выбора[24] – ответ на несколько ключевых вопросов: как именно организация будет конкурировать? В каком направлении? Как организация достигнет выбранного направления?

• Оценка и выбор стратегии – ответ на выборы по приемлемости предложенной стратегии.

Это основы любого стратегического планирования, которое мы не будем разбирать в этой книге, поэтому про него лучше почитать отдельно. Если собрать все основные подходы, которые в том числе известны мне, то получается следующая картинка:


Ключевые фреймворки при подготовке стратегии данных для организации

1 Образована от сокращения шести английских слов: Political (политика), Economic (экономика), Social (общество), Technological (технология), Environmental (развитие) и Legal (законность). Данный анализ направлен на выявление политических, экономических, социальных, технологических и юридических или законодательных аспектов внешней среды, которые могут повлиять на стратегию компании.

2 Методика для анализа отраслей и выработки стратегии бизнеса, разработанная Майклом Портером в Гарвардской школе бизнеса в 1979 году. Методикой выделяются пять сил, которые определяют уровень конкуренции и, следовательно, привлекательности ведения бизнеса в конкретной отрасли.

3 Методика для анализа бизнеса, фокусирующаяся на доступных ресурсах в конкретной отрасли.

4 Матрица Ансоффа представляет собой поле, образованное двумя осями – горизонтальной осью «товары компании» (подразделяются на существующие и новые) и вертикальной осью «рынки компании», которые также подразделяются на существующие и новые.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Примечания

1

По некоторым оценкам используется цифра 760,6 мегабайт для ХХ-хромосом и 735,9 мегабайт для XY-хромосом, или используется оценка в 400 мегабайт на один сперматозоид, что, в принципе, еще больше.

2

.

3

Горелов И. Н., Седов К. Ф. Основы психолингвистики. М., 2001. С. 105–106. Тер-Минасова С. Г. Язык и межкультурная коммуникация. М., 2000. С. 29–30.

4

Горелов И. Н., Седов К. Ф. Основы психолингвистики. М., 2001. С. 105–106. Тер-Минасова С. Г. Язык и межкультурная коммуникация. М., 2000. С. 29–30.

5

Ханс Геста Рослинг – шведский врач, академик, профессор Каролинского института по вопросам международного здравоохранения, специалист по статистике и всемирно известный лектор.

6

E-Gov – технологично-центрированная, реактивная среда предоставления государственных сервисов в электронном формате. Начальный этап развития цифрового государства, который измеряется процентом покрываемых существующих сервисов в электронном виде.

7

В соответствии с 152-ФЗ «О персональных данных».

8

В соответствии с 152-ФЗ «О персональных данных».

9

В соответствии с письмом ФНС РФ от 23.11.15 № 11–06/0733, поле «ИНН» стало обязательным реквизитом при подаче справки 2-НДФЛ.

10

Позднее размер штрафа предлагалось увеличить до пятисот рублей с одной записи, где нет обязательного атрибута ИНН.

11

Эти главы я писал под действием сильных психотропных препаратов, поэтому они могут показаться вам глубокими и сложными.

Но без них практически невозможно понять, о чем здесь написано.

12

.

13

What data for data-driven learning? Alex Boulton, 2011 Nottingham. https://files.eric.ed.gov/fulltext/ED544438.pdf

14

Согласно Wikipedia, ко́рпус (в данном значении множественное число – ко́рпусы, не корпуса́) – подобранная и обработанная по определенным правилам совокупность текстов, используемых в качестве базы для исследования языка.

15

Согласно Wikipedia, это – статистическая модель, имитирующая работу процесса, похожего на марковский процесс с неизвестными параметрами, и задачей ставится разгадывание неизвестных параметров на основе наблюдаемых. Полученные параметры могут быть использованы в дальнейшем анализе, например, для распознавания образов.

16

Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance?

17

.

18

Книга «Черный Лебедь. Под знаком непредсказуемости» Насим Таллеб.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Big data простым языком"

Книги похожие на "Big data простым языком" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алексей Благирев

Алексей Благирев - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алексей Благирев - Big data простым языком"

Отзывы читателей о книге "Big data простым языком", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.