» » » » Алексей Левин - Белые карлики. Будущее Вселенной


Авторские права

Алексей Левин - Белые карлики. Будущее Вселенной

Здесь можно купить и скачать "Алексей Левин - Белые карлики. Будущее Вселенной" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Литагент Альпина, год 2021. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алексей Левин - Белые карлики. Будущее Вселенной
Рейтинг:
Название:
Белые карлики. Будущее Вселенной
Издательство:
неизвестно
Год:
2021
ISBN:
978-5-0013-9373-3
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Белые карлики. Будущее Вселенной"

Описание и краткое содержание "Белые карлики. Будущее Вселенной" читать бесплатно онлайн.



Перед вами первая книга на  русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.





Уже находясь на госпитальной койке, Шварцшильд выполнил свое крупнейшее (и самое знаменитое) теоретическое исследование. В начале 1916 г. он написал и послал Эйнштейну в Берлин для публикации две статьи с точными решениями эйнштейновских уравнений для поля тяготения, созданного сферическими симметрическими источниками. Эти работы стали началом математического моделирования экзотических объектов, которые сегодня мы называем черными дырами.

Расселла, в отличие от Герцшпрунга, привела на вершины астрономии вполне традиционная академическая карьера. Он был старшим сыном в семье пресвитерианского пастора с Лонг-Айленда. В 16 лет поступил в Принстон, где, в духе того времени, изучал предметы, приличествующие джентльмену – древнегреческий, латынь и классическую литературу. Однако ему повезло записаться на вводный курс астрономии, который читал Чарльз Янг – блестящий педагог и один из первых американских астрофизиков. Эти лекции и определили будущее Расселла. В 1902–1905 гг. он продолжил образование в Кембриджском университете под руководством Джорджа Дарвина, сына великого создателя теории биологической эволюции. Из Англии Расселл вернулся в Принстон и быстро поднялся по стандартной лестнице должностей от преподавателя до полного профессора. В своей альма-матер он проработал вплоть до выхода в отставку в 1947 г.

Теперь перейдем от персоналий к науке. В конце XIX в. участница гарвардской женской команды Антония Мори разделила звезды на три класса в зависимости от внешнего вида темных линий (то есть линий поглощения) на их спектрограммах. Звезды со спектрами солнечного типа, содержащими множество хорошо заметных линий, распределенных по всему спектру, попали в категорию «a». Звезды с широкими и расплывчатыми спектральными линиями получили индекс «b»; и наконец, звезды с очень четкими узкими линиями были объединены в группу «c». Физический смысл такой классификации в те времена был совершенно неясен, и многим астрономам она казалась искусственной.

Однако Герцшпрунг не только принял эту схему, но и положил ее в основу весьма глубоких заключений. В статье 1905 г. он показал, что звезды подкласса «c» имеют почти незаметные, нередко вообще не поддающиеся измерению собственные движения, в среднем не превышающие сотой доли дуговой секунды[3]. Этот вывод он сделал на примере всего 30 звезд – результатами наблюдений более многочисленной группы он не располагал. Отсюда естественным образом следовало, что расстояния до звезд подкласса «c» гораздо больше, чем до звезд двух других групп схемы Мори. Кроме того, эти светила отличались большой видимой яркостью. Герцшпрунг объяснял это тем, что с-звезды излучают намного больше света, чем звезды из семейств «a» и «b» – иными словами, их абсолютные светимости намного выше. Во второй части этой работы, опубликованной в 1907 г., он развил свои аргументы до утверждения, что с-звезды отличаются от прочих не только по характеру спектров, но и по физической природе[4]. Он также показал, что особенно яркие красные звезды типа Арктура и Бетельгейзе должны обладать сравнительно коротким временем жизни.

Эту работу Герцшпрунг продолжил в Гёттингене и в Потсдаме. В 1911 г. в сборнике трудов Потсдамской обсерватории он опубликовал крайне нетривиальные результаты наблюдений звездных скоплений Плеяд и Гиад[5]. На их основании Герцшпрунг пришел к заключению, что существует четко выраженная статистическая корреляция между цветом звезды и ее светимостью. Чтобы сделать эту корреляцию наглядней, он перевел ее в графическую форму. Для этого он поместил на одной оси прямоугольных координат цветовые характеристики звезд (которые, как он понял не позднее 1908 г., можно перевести в данные об их температурах), а на другой – наблюдаемые светимости. Это не было вполне корректным, но в данном случае допустимым. Поскольку расстояния от центров Плеяд и Гиад до Солнца сильно превышают размеры этих скоплений, можно считать, что звезды каждого скопления приблизительно одинаково удалены от нашей системы. Отсюда следует, что их видимые звездные величины отличаются от абсолютных на одно и то же число (абсолютная величина звезды есть, по определению, ее видимая величина при условии, что звезда располагается от наблюдателя на расстоянии в 10 парсек). Оказалось, что большинство звезд расположилось на каждой диаграмме вдоль достаточно узкой полосы, которую Герцшпрунг назвал главной последовательностью. Это лингвистическое изобретение со временем превратилось в один из основных терминов звездной астрономии.

Правда, диаграммы Герцшпрунга все же имели ограниченную применимость. В его распоряжении оказалось слишком мало звезд, к тому же нередко похожих друг на друга. Так, например, в Плеядах много ярких голубых светил, однако совсем нет звезд, которые сегодня называются гигантами и сверхгигантами; в Гиадах гиганты имеются, но их немного. В качестве следующего шага нужно было расширить наблюдательную базу для конструирования диаграмм «цвет-светимость». Этот шаг вскоре и сделал Расселл. В 1909–1913 гг. он собрал большой объем информации об абсолютных светимостях и спектральных типах приблизительно 300 звезд, удаленных от Земли на различные дистанции (какое он проявил упорство и какими методами пользовался, само по себе очень интересно, но в эти детали я вдаваться не буду). Проанализировав эти сведения, Расселл пришел практически к таким же выводам, что и Герцшпрунг, чьи работы, по всей вероятности, ему тогда не были известны (кстати, впервые эти ученые встретились в июле 1913 г. на той самой международной конференции в Бонне, где и была утверждена гарвардская классификация звездных спектров).

В первой публикации на эту тему Расселл представил свои результаты в виде таблиц[6]. Годом позже он обсудил их с коллегами на нескольких конференциях. В Лондоне на симпозиуме Королевского астрономического общества в июне 1913 г. он впервые использовал термины «карликовые звезды» и «звезды-гиганты», которые вскоре и обнародовал[7]. По ошибке он приписал обе терминологические инновации Герцшпрунгу, который слово «карлики» по отношению к звездам никогда не употреблял, хотя иногда называл звезды великанами (нем. Riesen); о звездах-гигантах (нем. Giganten) в 1908 г. также писал Шварцшильд. Эти названия вместе с термином Герцшпрунга «главная последовательность» быстро вошли в лексикон астрономии.

А вскоре на свет родилась и знаменитая диаграмма. Расселл впервые презентовал ее в завершенном виде (и даже в разных версиях) 30 декабря 1913 г. в обширном докладе на конференции Американского астрономического и астрофизического общества в Атланте. Этот доклад через год был опубликован в журнале Nature в двух частях под общим заголовком «Отношения между спектрами и другими характеристиками звезд»[8].

Выступление Расселла содержало множество интереснейших идей и выводов. Например, он привел убедительные аргументы в пользу тогда еще новой идеи, что спектр звезды в первую очередь зависит от температуры ее атмосферы, а не от химического состава. Но обо всем не расскажешь, поэтому ограничимся диаграммой. Во второй части статьи Расселла[9] она представлена в версии, ставшей классической, которая несчетное число раз воспроизводилась в учебниках и книгах по истории астрономии.



К этой картинке стоит присмотреться внимательно. По горизонтали отложены спектральные классы звезд от самых горячих (слева) до самых холодных (справа). На вертикальной оси отложены абсолютные звездные величины от –4 (это самые яркие звезды, известные в те времена) до +12 (самые тусклые). Отмеченные позиции отдельных звезд (их свыше 200) в основном лежат вдоль узкой наклонной полосы, ограниченной двумя параллельными линиями. Сразу видно, что для подавляющего большинства звезд, представленных на диаграмме, выполняется четкая закономерность: чем больше абсолютная светимость звезды, тем «левее» ее спектральный класс – и, следовательно, тем звезда горячее. Звезды внутри полосы как раз и составляют ту самую главную последовательность, о которой ранее писал Герцшпрунг.

Однако на диаграмме представлены и звезды, лежащие вне главной последовательности. В правом верхнем квадранте можно заметить звезды внутри горизонтальной полосы, обладающие примерно одинаковой (причем высокой) светимостью для разных спектральных классов (то есть температур). Именно эти звезды Расселл назвал гигантами (среди них есть и совсем холодные красные гиганты). А в левом нижнем квадранте скромно притулилась одна единственная звезда класса А примерно 11-й величины – следовательно, горячая, но очень тусклая. Расселл поместил туда двойной спутник звезды 40 Эридана, не различая членов этой пары. Сейчас мы знаем, что своей высокой температурой она обязана белому карлику 40 Эридана В, а его холодный спутник 40 Эридана С вносит в светимость очень незначительный вклад. Из диаграммы Расселла сразу видно, что единственный обитатель этого квадранта очень сильно выпадает из главной последовательности и потому должен очень отличаться от представленных в ней звезд.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Белые карлики. Будущее Вселенной"

Книги похожие на "Белые карлики. Будущее Вселенной" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алексей Левин

Алексей Левин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алексей Левин - Белые карлики. Будущее Вселенной"

Отзывы читателей о книге "Белые карлики. Будущее Вселенной", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.