» » » Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей


Авторские права

Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей

Здесь можно купить и скачать "Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Литагент Альпина, год 2022. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей
Рейтинг:
Название:
Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей
Издательство:
неизвестно
Жанр:
Год:
2022
ISBN:
9785001398035
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей"

Описание и краткое содержание "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей" читать бесплатно онлайн.



Рассказ о фундаментальной научной картине мира в развитии от более наглядного к более абстрактному: от брошенного камня до объяснения уравнений Эйнштейна и Шрёдингера. Человек разбирается в устройстве Вселенной, наблюдая за движением и его последствиями, догадываясь о правилах, которые регулируют все, что происходит, и получая подсказки о скрытых частях мира или о новых правилах из несоответствий между теоретически ожидаемым и реальным движением: знаменитые примеры включают предсказанное существование Нептуна, Планеты 9 и невидимого вещества в галактиках, причины ускоренного расширения Вселенной, квантовую природу теплового излучения. Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель». В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие. Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.





С тех пор гравитационный маневр применяли множество раз. «Вояджер-1», запущенный в 1977 г. (на 16 дней позже «Вояджера-2»), получил прибавку к скорости, позволяющую ему сейчас, когда вы это читаете, покидать пределы Солнечной системы с рекордной скоростью – около 61 000 км/ч, приобретенной в основном у Юпитера и Сатурна (рис. 2.10). В пересчете на космические масштабы это около 3,6 а.е./год. Без помощи планет «Вояджеры» не пролетели бы и полпути до своих положений на настоящий момент. 25 августа 2012 г. «Вояджер-1» стал первым искусственным аппаратом, вышедшим в межзвездное пространство, если проводить границу там, где попутный солнечный ветер наконец оказывается слабее встречного галактического ветра. Потребуются тем не менее еще сотни лет, чтобы он достиг расстояний, на которые уходят от Солнца наиболее далекие из идентифицированных тел Солнечной системы, такие как 2013 SY99, Лелеакухонуа (первоначально известная как Гоблин) и 2014 FE72.


Рис. 2.10. Большие планеты изменяют траектории «Вояджеров», ускоряя их при этом. Засечками показаны точки траектории, в которых «Вояджеры» и планеты находились в определенные даты каждый год


Главное действующее лицо в истории про гравитационную пращу – гипербола (см. главу «прогулка 1»). Представим себе, что космический аппарат – скажем, запущенный с Земли – подлетает к Юпитеру достаточно быстро, со скоростью, которая не позволит Юпитеру оставить этот аппарат в зоне своего притяжения. Если временно забыть про притяжение Солнца, а кроме того, смотреть на происходящее, сидя на Юпитере, то картина хорошо известна: космический корабль приходит издалека по ветви гиперболы, отклоняется и уходит прочь. Приходящая и уходящая ветви гиперболы симметричны, и даже скорость движения при прощании с Юпитером такая же по величине, как скорость при сближении с Юпитером на том же расстоянии от него. Но это если смотреть с Юпитера! А если смотреть с Солнца, то движется не только сам аппарат, но и Юпитер, и скорость их сближения – это результат несложного математического действия со скоростями каждого. В начале всего эпизода мы пересчитываем скорость аппарата относительно Солнца в скорость сближения с Юпитером. В конце эпизода мы выполняем обратное действие: скорость удаления от Юпитера пересчитываем в скорость аппарата относительно Солнца. Казалось бы, это два взаимно противоположных действия: сколько сначала добавили, столько потом и вычли? Нет! Суть дела в том, что корабль повернул вокруг планеты: его скорость изменила направление. Поэтому скорость Юпитера, учитываемая на входе, и она же, учитываемая на выходе, не сокращают друг друга. Направлениями можно распорядиться так, что относительно Солнца корабль ускорится в результате пролета мимо Юпитера. В этом и состоит идея гравитационной пращи. Чуда в том, что корабль ускорился, «просто» пройдя мимо планеты, нет: дополнительная энергия движения относительно Солнца получена из энергии движения Юпитера; а сам он такого комариного укуса вообще не заметит (в расчетах с любой точностью можно считать, что скорость Юпитера не изменяется). Совсем наглядно происходящее видно из рис. 2.11, где, впрочем, ради этой наглядности пришлось кое-чем пожертвовать. Там предполагается, что космический корабль поворачивает вокруг планеты на 180°, чего не случается при движении по гиперболе: ее ветви расходятся все-таки под некоторым углом и никогда не бывают параллельными. Об изображенном на рисунке можно думать как о случае, к которому можно приблизиться, выбирая все более экстремальные гиперболы. Зато там все совсем просто со скоростями. Скорость корабля относительно Солнца v, а скорость планеты ему навстречу U, а тогда скорость сближения (скорость относительно Юпитера) равна v + U; после поворота на 180° она осталась численно равной v + U, но направлена в противоположную сторону – и это по-прежнему скорость относительно Юпитера. Однако теперь, после разворота корабля, Юпитер «несет» его по своей орбите, где сам имеет скорость U. Относительно Солнца скорость корабля получается равной v + U + U = v + 2U. Как видим, корабль приобрел две скорости Юпитера – как будто Юпитер был упругой стенкой, от которой корабль отразился, как теннисный мяч от приближающегося поезда. На реальных траекториях выигрыш меньше, да и к направлению вылетания из «пращи» надо относиться внимательно, если не все равно, куда потом лететь, но идея работает.

Гравитационная праща – обмен энергией движения с планетой

Аппарат «Кассини»[38], имевший целью работу на орбите Сатурна, был слишком тяжел, чтобы любая из имевшихся ракет-носителей могла отправить его сразу к цели. Стартовав в октябре 1997 г., «Кассини» сначала направился к Венере. Там в апреле 1998-го он получил прибавку в целых 7 км/с к скорости. В декабре того же года привезенное с собой топливо частично пошло на полуторачасовое включение двигателя для торможения на 450 м/с, что позволило аппарату в июне 1999-го второй раз пройти вблизи Венеры, которая направила его к Земле! Уже в августе 1999 г. родная планета встретила своего ускорившегося сына, подарив ему еще 5,5 км/с. С ними «Кассини» и отправился во внешнюю часть Солнечной системы, где сначала прошел мимо Юпитера, который еще немного «подтолкнул» его к цели, а 1 июля 2004 г. наконец вышел на орбиту Сатурна. (Дальнейшие приключения в ходе этой сверхуспешной миссии включали в себя посадку аппарата «Гюйгенс» на Титане, рискованные прохождения между кольцами и эпическое погружение вглубь планеты-гиганта 15 сентября 2017 г.)


Рис. 2.11. Предельный (нереальный, но наглядный) случай гравитационной пращи. Нереальность состоит в предположении, что космический корабль разворачивается вокруг планеты на 180°, тогда как гиперболические траектории позволяют развернуться только на угол, меньший 180°. В изображенном предельном случае космический корабль приобретает две скорости планеты, как если бы он упруго отразился от движущейся стенки


Распоряжаясь направлениями при исполнении гравитационной пращи, можно и уменьшить скорость аппарата относительно Солнца. Это тоже бывает нужно, например, чтобы запустить космический аппарат к Меркурию или «прямо на Солнце». Сделать это с Земли крайне непросто из-за скорости, с которой планета движется по орбите вокруг Солнца; эту скорость надо каким-то образом погасить, и один из способов – «праща наоборот» (в этом случае более сдержанно говорят о «гравитационном маневре») у Венеры. Правда, одного захода может не хватить, а это сильно удлиняет путешествие. Аппарат «Солар орбитер», запущенный к Солнцу Европейским космическим агентством 10 февраля 2020 г., будет двигаться к расчетной орбите вокруг Солнца около трех с половиной лет, совершая один за другим гравитационные маневры у Венеры и Земли (а затем Венера поработает еще и для того, чтобы наклонить плоскость его орбиты с целью лучшего обзора полюсов Солнца). И кроме того, гравитационный маневр около Земли выполняется в фильме «Марсианин».

*****

Рис. 2.12. Долгая дорога аппарата «Чандраян-1» к Луне: удлиняющиеся эллипсы


Где прибавить ходу. В последнее время к Луне часто летают «более долгой дорогой», экономя при этом самый дорогой ресурс – топливо (или, что то же самое, достигая большей скорости при заданном расходе топлива). Сочетание законов движения и гравитации предоставляет такую возможность при условии, что вы добираетесь до Луны постепенно, по траектории, представляющей собой букет из нескольких все более вытянутых эллипсов. Вместо одного TLI – включения двигателя на достаточное время, чтобы забросить корабль на траекторию полета к Луне, – корабль сначала, после недолгого включения двигателя, переходит на эллипс, вытянутый еще не сильно, и делает по нему полный оборот. В точке наибольшего приближения к Земле двигатель ненадолго включается снова, и корабль переходит на более вытянутый эллипс, снова делает полный оборот и снова включает двигатель вблизи Земли и так далее. Так, например, летала китайская миссия в 2007 г., индийская в 2008-м и израильская в 2019-м – все беспилотные. Экономия топлива по сравнению с «классическим» TLI требует времени на вычерчивание всех промежуточных эллипсов, что делает такой маршрут непригодным для пилотируемых полетов, поскольку экипажу в течение всего этого времени требуются кислород, вода, пища и тепло, а главное – многовитковая траектория многократно пересекает радиационные пояса Земли. В конце октября – начале ноября 2008 г. индийский аппарат «Чандраян-1» примерно за две недели перешел с орбиты с максимальным удалением от Земли 22 860 км на орбиту с максимальным удалением 380 000 км, включая для этого двигатель несколько раз, когда возвращался в точку наибольшего сближения с Землей (рис. 2.12). По итогам первого включения на 18 минут аппарат перешел на эллипс с максимальным удалением, которое оказалось на 15 040 км больше, чем у его орбиты до включения двигателя; при следующем сближении с Землей двигатель включили на 16 минут, что добавило к максимальному удалению на новом витке заметно больше – 36 815 км; но затем 9,5 минуты работы двигателя принесли целых 89 885 км, после чего всего 3 минуты подняли орбиту еще на 102 400 км, и, наконец, 2,5 минуты включения – еще на 113 000 км. Если «эффективность одной минуты включения» грубо измерять в терминах прибавки к максимальному удалению от Земли на витке «нового» эллипса, то эта эффективность растет с каждой следующей попыткой: от 15 040/18 = 836 до 113 000/2,5 = 45 200 км удаления на минуту работы двигателя. Цифры эти надо воспринимать лишь ориентировочно, потому что притяжение Земли слабеет с расстоянием и подняться с 207 000 до 307 000 км проще, чем с 7000 до 107 000; кроме того, при каждом следующем запуске двигателя ракета оказывается легче, а потому сильнее разгоняется при той же тяге. Но, как бы то ни было, тенденция ясна. Называется это явление эффектом Оберта, а сам маневр, состоящий в том, чтобы нырнуть к планете и включить двигатель в момент наибольшего сближения, – маневром Оберта. Выглядит все это с первого взгляда чуть подозрительно, потому что один и тот же двигатель, работающий одно и то же время, дает, конечно, одну и ту же прибавку


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей"

Книги похожие на "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алексей Семихатов

Алексей Семихатов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей"

Отзывы читателей о книге "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.