» » » Стивен Вайнберг - Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы


Авторские права

Стивен Вайнберг - Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

Здесь можно скачать бесплатно "Стивен Вайнберг - Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Едиториал УРСС, год 2004. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Стивен Вайнберг - Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Рейтинг:
Название:
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Издательство:
Едиториал УРСС
Жанр:
Год:
2004
ISBN:
5-354-00526-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы"

Описание и краткое содержание "Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы" читать бесплатно онлайн.



В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.

Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?

Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.

Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами. Она распахивает читателю двери в новый мир и помогает понять то, с чем он там встретится.






Применяя правила квантовой механики к комбинированной системе из частицы и измерительного прибора, можно на самом деле доказать, что вероятность обнаружить частицу здесь, а указатель прибора в положении здесь, пропорциональна квадрату значения здесь волновой функции частицы перед тем самым мгновением, когда она начала взаимодействовать с измерительным прибором, что как раз и постулируется в копенгагенской интерпретации квантовой механики. Однако вопрос Крошки Тима все еще остается без ответа. При вычислении вероятности того, что комбинированная система из частицы и измерительного прибора имеет одну из двух конфигураций, мы неявно все-таки протащили наблюдателя, который считывает показания прибора и обнаруживает надписи здесь или там. Хотя при этом прибор рассматривается квантово-механически, наблюдатель считается классическим; он обнаруживает, что указатель совершенно определенно указывает либо на здесь, либо на там, причем это нельзя предсказать заранее иначе как вероятностным образом. Конечно, можно и наблюдателя рассматривать квантово-механически, но ценой введения другого наблюдателя, который детектирует результаты наблюдений первого, читая, например, статью в физическом журнале. И так далее.

Множество физиков работало над тем, чтобы очистить основы квантовой механики от любых утверждений о вероятностях[69] или каком-то ином интерпретирующем постулате, различающем системы и наблюдателей. То, что требуется, это квантовомеханическая модель с волновой функцией, описывающей не только различные изучаемые системы, но и как-то учитывающей наличие сознательного наблюдателя. Имея такую модель, можно попытаться показать, что в результате повторяющихся взаимодействий наблюдателя с отдельными системами волновая функция комбинированной системы с достоверностью эволюционирует к конечной волновой функции, причем наблюдатель в этом конечном состоянии уверен, что вероятности индивидуальных измерений совпадают с предсказаниями в рамках копенгагенской интерпретации. Я не убежден, что такая программа исследований успешно завершена, но думаю, что это может произойти рано или поздно. И тогда реализм Скруджа одержит полную победу.

Самое удивительное в том, насколько все это не имеет значения. Большинство физиков использует квантовую механику в повседневной работе, не заботясь о фундаментальных проблемах ее интерпретации. Будучи здравомыслящими людьми, имеющими очень мало времени на то, чтобы успевать следить за новыми идеями и данными в своей собственной области, они совершенно не тревожатся по поводу всех этих фундаментальных проблем. Недавно Филип Канделас (с физического факультета Техасского университета) ждал вместе со мной лифт, и разговор зашел о молодом теоретике, подававшем надежды на старших курсах и затем исчезнувшем из вида. Я спросил Фила, что помешало бывшему студенту продолжать исследования.

Фил грустно покачал головой и сказал: «Он попытался понять квантовую механику».

Философия квантовой механики настолько не имеет отношения к ее реальному использованию, что начинаешь подозревать, что все глубокие вопросы о смысле измерения на самом деле пусты, порождены несовершенством нашего языка, который создавался в мире, практически управляющемся законами классической физики. Но я признаю, что ощущаю некоторый дискомфорт, всю жизнь используя теорию, которую никто толком не понимает. Нам ведь на самом деле необходимо лучше понимать квантовую механику, если мы хотим заниматься квантовой космологией, т.е. применением квантовой механики ко Вселенной в целом, когда даже вообразить нельзя, что существует какой-то внешний наблюдатель. Сейчас Вселенная слишком огромна для квантовой механики, чтобы это имело значение, но, согласно теории Большого взрыва, в прошлом было время, когда частицы находились настолько близко друг к другу, что квантовые эффекты должны были быть существенными. В наши дни никто даже не знает правил применения квантовой механики в подобной ситуации.

С моей точки зрения, еще интереснее вопрос о том, является ли квантовая механика с необходимостью истинной наукой. Квантовая механика имела феноменальный успех при объяснении свойств частиц, атомов и молекул, так что мы уверены, что она является очень хорошим приближением к истине. Но вопрос заключается в том, не существует ли другой логически возможной теории, предсказания которой очень близки, но все же отличаются от предсказаний квантовой механики. Легко придумать способы небольшого изменения почти всех физических теорий. Например, ньютоновский закон тяготения, утверждающий, что сила тяготения между двумя частицами убывает обратно пропорционально квадрату расстояния между ними, можно немного изменить, предположив, что сила убывает по закону, содержащему другую степень расстояния, которая близка, но все же отличается от степени −2. Чтобы экспериментально проверить теорию Ньютона, следует сравнить наблюдения над телами Солнечной системы с теми предсказаниями, которые получаются в случае силы, убывающей по закону с некоторой неизвестной степенью расстояния, и таким образом установить предел того, насколько этот закон может отклоняться от закона обратных квадратов. Даже общую теорию относительности можно немного изменить, например включив более сложные малые слагаемые в уравнения поля или введя в теорию новые слабовзаимодействующие поля. Поразительно, что до сих пор не удалось найти логически непротиворечивой теории, которая была бы близка к квантовой механике, но при этом отличалась от нее.

Несколько лет тому назад я сам попытался построить такую теорию. У меня не было серьезных намерений предложить альтернативу квантовой механике. Я всего лишь хотел построить хоть какую-нибудь теорию, предсказания которой были бы близки, но не совпадали с предсказаниями квантовой механики и которую можно было бы экспериментально проверить. Для этой цели я попытался предложить физикам-экспериментаторам идею такого эксперимента, который мог бы служить интересным количественным тестом справедливости квантовой механики. Когда речь идет о проверке само́й квантовой механики, а не какой-то конкретной квантовомеханической теории вроде стандартной модели, то для того, чтобы экспериментально различить квантовую механику и альтернативную теорию, следует проверить выполнение какого-то весьма общего свойства любой конкретной квантовомеханической теории. В поисках альтернативы квантовой механике я вцепился в одно общее свойство этой теории, всегда казавшееся несколько более произвольным, чем другие, а именно в свойство линейности.

Нужно сказать несколько слов о смысле линейности. Вспомним, что значения волновой функции любой системы меняются со скоростями, зависящими от этих значений, а также от природы системы и окружающей среды. Например, скорость изменения значения здесь волновой функции нашей мифической частицы равна некоторой константе, умноженной на значение здесь, плюс другая константа, умноженная на значение там. Динамический закон такого конкретного вида называется линейным, так как если начать менять одно значение волновой функции в произвольный момент времени и построить график любого значения волновой функции в любой последующий момент в зависимости от меняющегося значения, то при прочих равных условиях этот график будет прямой линией. Грубо говоря, отклик системы на любое изменение ее состояния пропорционален этому изменению. Одним из очень важных следствий такой линейности, как отмечал Скрудж, является то, что в квантовой механике не возникает хаотического поведения; малое изменение начальных условий приводит только к малым изменениям значений волновой функции в любой последующий момент времени.

Существует множество классических систем, линейных в указанном смысле, но линейность в классической физике никогда не бывает точной. Наоборот, в квантовой механике предполагается, что она линейна при любых обстоятельствах. Если кто-то собирается поискать способы изменения квантовой механики, то естественнее всего попробовать исследовать возможность, что эволюция волновой функции не точно линейна.

После некоторых усилий я построил слегка нелинейную альтернативу квантовой механике, казавшуюся физически осмысленной и легко проверяемой с очень высокой точностью. Тестом служило общее следствие линейности, заключающееся в том, что частоты колебаний любой линейной системы не зависят от способа возбуждения этих колебаний.

Например, Галилей заметил, что частота колебаний маятника не зависит от того, насколько велик размах колебаний. Это верно потому что пока амплитуда колебаний достаточно мала, маятник является линейной системой; скорости изменения его отклонения и его импульса пропорциональны, соответственно, импульсу и отклонению. Все часы используют это свойство колебаний линейных систем, идет ли речь о маятниковых, пружинных или кварцевых часах. Несколько лет назад, после разговора с Дэвидом Уайнлендом из Национального бюро стандартов, я понял, что вращающиеся вокруг своей оси ядра, используемые в Бюро для создания эталонов времени, позволяют осуществить превосходный тест линейности квантовой механики; в моей слегка нелинейной альтернативной теории частота, с которой направление спина ядра прецессирует вокруг направления магнитного поля, должна очень слабо зависеть от угла между спином и магнитным полем. Из того факта, что в Бюро стандартов никогда не наблюдали подобного эффекта, я сделал вывод, что любые нелинейные эффекты в изучавшемся ядре (изотопе бериллия) не могут привести к изменению энергии ядра на величину, большую, чем 10−18(в относительных единицах). После этой моей работы Уайнленд и другие экспериментаторы из Гарварда, Принстона и других лабораторий улучшили точность измерений, так что сейчас мы знаем, что нелинейные эффекты давали бы еще меньший вклад. Таким образом, даже если линейность квантовой механики приближенна, это приближение очень хорошее.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы"

Книги похожие на "Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Стивен Вайнберг

Стивен Вайнберг - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Стивен Вайнберг - Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы"

Отзывы читателей о книге "Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.