БСЭ БСЭ - Большая Советская Энциклопедия (ДИ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ДИ)"
Описание и краткое содержание "Большая Советская Энциклопедия (ДИ)" читать бесплатно онлайн.
Диоритовая статуя фараона Хефрена из заупокойного храма при пирамиде Хефрена в Гизе (фрагмент). 28 в. до н. э. Египетский музей. Каир.
Диоскорейные
Диоскоре'йные (Dioscoreaceae), семейство однодольных растений. Травы, преимущественно с вьющимися стеблями и толстыми корневищами или клубнями. Листья большей частью очередные, сетчатожилковатые. Цветки мелкие, в кистях, колосьях или метёлках, двуполые или чаще однополые на двудомных растениях. Около 10 родов (более 650 видов), главным образом в тропических и субтропических странах; в СССР 2 рода, представленных 3 видами. Важное хозяйственное значение имеют виды рода диоскорея.
Диоскорея
Диоскоре'я (Dioscorea), род растений, обычно лиан, семейства диоскорейных. Двудомные многолетние травы, реже полукустарники, с клубнями или корневищем. Листья большей частью очередные и цельные. Цветки мелкие, однополые, в кистях или колосьях; плод — коробочка. Свыше 600 видов в тропиках и субтропиках, редко в умеренных поясах. В СССР 2 вида: Д. кавказская (D. caucasica) — в западном Закавказье, и Д. многокистевая (D. polystachya) — на юге Дальнего Востока. В их корневищах содержатся сапонины; препарат диоспонин предложен для лечения атеросклероза. D. batatas, D. alata, D. sativa и др. виды Д. возделываются ради съедобных клубней и более известны под названием ямс.
Диоскуриада
Диоскуриа'да, Диоскурия (греч. Dioskuriás), античный город на побережье Чёрного моря (на месте современного г. Сухуми). Основанная в 6 в. до н. э. греками из Милета, Д. вела крупную торговлю с племенами Кавказа солью, скотом, воском, хлебом, рабами. В начале 1 в. н. э. оказалась под властью Рима, тогда же возникла крепость, в которой находился постоянный римский гарнизон; город стал называться Себастополисом. Расцвет Д. падает на 2—3 вв. н. э., с 4 в. начался упадок. Крепость существовала до 6 в. Вследствие опускания прибрежной местности и наступления моря развалины Д. находятся теперь на дне Сухумской бухты.
Лит.: Шервашидзе Л. А., Соловьев Л. Н., Исследование древнего Себастополиса, «Советская археология», 1960, № 3.
Диоскуры
Диоску'ры (греч. Dióskuroi, буквально — сыновья Зевса), в древнегреческой мифологии сыновья Зевса и Леды, герои-близнецы (смертный Кастор и бессмертный Полидевк). Согласно мифам, Д. совершили ряд подвигов (поход в Аттику, чтобы освободить сестру Елену, похищенную Тесеем, участие в походе аргонавтов и др.). Кастор славился как укротитель коней, Полидевк — как кулачный боец. По происхождению Д. — местные спартанские божества, которым в историческое время воздавались почести как покровителям спартанского государства.
Диофант (древнегреч. математик)
Диофа'нт (Dióphantos) (вероятно, 3 в.), древнегреческий математик из Александрии. Сохранилась часть его математического трактата «Арифметика» (6 книг из 13), где даётся решение задач, в большинстве приводящихся к неопределённым уравнениям до 4-й степени (см. Диофантовы уравнения). Решение ищется в рациональных положительных числах (отрицательных чисел у Д. нет). Для обозначения неизвестного и его степеней, знака равенства Д. употреблял сокращённую запись слов. Д. искусно решал алгебраические и теоретико-числовые задачи, не давая общих методов решения. Сочинения Д. явились отправной точкой для исследований П. Ферма, Л. Эйлера, К. Гаусса и др.
Лит.: Кольман Э., История математики в древности, М., 1961.
Диофант (полководец)
Диофа'нт (греч. Dióphantos), полководец понтийского царя Митридата VI Евпатора. В 110—109 до н. э. дважды посылался с войсками в Крым и успешно отразил натиск скифов, стремившихся захватить Херсонес. Во время пребывания Д. в Пантикапее с дипломатической миссией там вспыхнуло восстание скифов (см. Савмака восстание). Д. удалось бежать в Херсонес. Весной 107 до н. э. Д. совершил 3-й поход из Понта в Крым для подавления восстания на Боспоре, овладел восточным Крымом и разгромил повстанцев. Боспорское государство было (до 63 до н. э.) подчинено Митридату VI.
Лит.: Жебелев С. А., Северное Причерноморье. Исследования и статьи по истории Северного Причерноморья античной эпохи, М. — Л., 1953, с. 82—115; Гайдукевич В. Ф., Еще раз о восстании Савмака, «Вестник древней истории», 1962, №1.
Диофантовы приближения
Диофа'нтовы приближе'ния, часть теории чисел, изучающая приближения действительных чисел рациональными числами, или, при более широком понимании предмета, вопросы, связанные с решением в целых числах линейных и нелинейных неравенств или систем неравенств с действительными коэффициентами. Д. п. названы по имени древнегреческого математика Диофанта, который занимался задачей решения алгебраических уравнений в целых числах — так называемых диофантовых уравнений. Методы теории Д. п. основаны на применении непрерывных дробей, Фарея рядов и Дирихле принципа.
Задача о приближении одного числа рациональными дробями решается с помощью всех этих трёх методов и особенно с применением непрерывных дробей. Приближение действительного числа a подходящими дробями pklqk разложения a в непрерывную дробь характеризуется неравенством |a — pk/qk| < 1/qk2; с другой стороны, если несократимая дробь a/b удовлетворяет неравенству |a — а/b | < 1/2b2, то она является подходящей дробью разложения a в непрерывную дробь. Глубокие исследования о приближении действительных чисел a рациональными дробями принадлежат А. А. Маркову (старшему). Существует много расширений задачи о приближении числа рациональными дробями; к ним прежде всего относится задача об изучении выражений xq — у — a, где q и a — некоторые действительные числа, а х и у принимают целые значения (так называемая неоднородная одномерная задача). Первые результаты в решении этой задачи принадлежат П. Л. Чебышеву. Среди разнообразных теорем о приближённом решении в целых числах систем линейных уравнений (многомерные задачи Д. п.) особенно известна теорема, принадлежащая Л. Кронекеру: если a1,..., an — действительные числа, для которых равенство a1a1 +...+anan = 0 с целыми a1,..., an возможно лишь при a1 =... = an = 0, a b1,..., bn — некоторые действительные числа, то при любом заданном e > 0 можно найти число t и такие целые числа х1,..., xn, что выполняются неравенства |tak - bk - xk| < e, k = 1,2,..., n. Для решения многомерных задач Д. п. весьма плодотворным является принцип Дирихле. Методы, основанные на принципе Дирихле, позволили А. Я. Хинчину и др. учёным построить систематическую теорию многомерных Д. п. Для теории Д. п. важное значение имеет связь с геометрией, основанная на том, что систему линейных форм с действительными коэффициентами можно изобразить как решётку в n-мepном арифметическом пространстве. В конце 19 в. Г. Минковский доказал ряд геометрических теорем, имеющих приложения в теории Д. п.
В вопросах нелинейных Д. п. замечательные результаты получил И. М. Виноградов. Созданные им методы занимают центральное место в этой области теории чисел. Одной из важнейших задач теории Д. п. является проблема приближения алгебраических чисел рациональными.
К Д. п. относится теория трансцендентных чисел, в которой находят оценки для модулей линейных форм и многочленов от одного и нескольких чисел с целыми коэффициентами. Теория Д. п. тесно связана с решением диофантовых уравнений и с различными задачами аналитической теории чисел.
Лит.: Виноградов И. М., Метод тригонометрических сумм в теории чисел, М., 1971; Гельфонд А. О., Приближение алгебраических чисел алгебраическими же числами и теория трансцендентных чисел, «Успехи математических наук», 1949, т. 4, в. 4; Фельдман Н. И., Шидловский А. Б., Развитие и современное состояние теории трансцендентных чисел, там же, 1967, т. 22, в. 3; Хинчин А. Я., Цепные дроби, 3 изд., М., 1961; Koksma J. F., Diophantische Approximationen, B., 1936.
Диофантовы уравнения
Диофа'нтовы уравне'ния (по имени древнегреческого математика Диофанта), алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, имеющие число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения. Понятие Д. у. в современной математике расширено: это уравнения, у которых разыскиваются решения в алгебраических числах. Д. у. называются также неопределёнными. Простейшее Д. у. ax + by = 1, где а и b — целые взаимно простые числа, имеет бесконечно много решений: если x0 и у0 — одно решение, то числа х = x0 + bn, у = y0-an (n — любое целое число) тоже будут решениями. Так, все целые решения уравнения 2x + 3у = 1 получаются по формулам х = 2 + 3n, у = - 1 — 2n (здесь x0 = 2, у0 = - 1). Другим примером Д. у. является x2 + у2 = z2. Целые положительные решения этого уравнения представляют длины катетов х, у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами. Все тройки взаимно простых пифагоровых чисел можно получить по формулам х = m2 - n2, у = 2mn, z = m2 + n2, где m и n — целые числа (m> n > 0).
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ДИ)"
Книги похожие на "Большая Советская Энциклопедия (ДИ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ДИ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ДИ)", комментарии и мнения людей о произведении.