» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)
Рейтинг:
Название:
Большая Советская Энциклопедия (ЛА)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ЛА)"

Описание и краткое содержание "Большая Советская Энциклопедия (ЛА)" читать бесплатно онлайн.








  Космогоническая гипотеза Л. имела огромное философское значение (см. Лапласа гипотеза). Она изложена им в приложении к его книге «Изложение системы мира» (т. 1—2, 1796).

  По философским взглядам Л. примыкал к французским материалистам; известен ответ Л. Наполеону I, что в своей теории о происхождении Солнечной системы он не нуждался в гипотезе о существовании бога. Ограниченность механистического материализма Л. проявилась в попытке объяснить весь мир, в том числе физиологического, психического и социальные явления, с точки зрения механистического детерминизма. Своё понимание детерминизма Л. рассматривал как методологический принцип построения всякой науки. Образец окончательной формы научного познания Л. видел в небесной механике. Лапласовский детерминизм стал нарицательным обозначением механистической методологии классической физики. Материалистическое мировоззрение Л., ярко сказавшееся в научных трудах, контрастирует с его политической неустойчивостью. При всяком политическом перевороте Л. переходил на сторону победивших: сначала был республиканцем, после прихода к власти Наполеона — министром внутренних дел; затем был назначен членом и вице-председателя сената, при Наполеоне получил титул графа империи, а в 1814 подал свой голос за низложение Наполеона; после реставрации Бурбонов получил пэрство и титул маркиза.

  Соч.: Oeuvres.... t. 1—14, P., 1878—1912; в рус. пер. — Изложение системы мира., т. 1—2, СНБ, 1861; Опыт философии теории вероятностей, М., 1908.

  Лит.: Воронцов-Вельяминов Б. А., Лаплас, М., 1937.

П. С. Лаплас.

Лапласа азимут

Лапла'са а'зимут, геодезический азимут А направления на наблюдаемую точку, полученный по его астрономическому азимуту a, исправленному с учётом влияния отклонения отвеса в пункте наблюдения. Астрономический азимут направления на какую-либо точку в пространстве есть двугранный угол между плоскостью астрономического меридиана пункта наблюдения и плоскостью, проходящей через отвесную линию в этом пункте и наблюдаемую точку. Л. а. (геодезический азимут) пространственной точки равен двугранному углу между плоскостью геодезического меридиана пункта наблюдения и плоскостью, проходящей через нормаль к поверхности референц-эллипсоида в этом пункте и наблюдаемую точку. Для перехода от астрономич. азимута к Л. а. служит формула

  А = a— htgj — (xsina — hcosa)ctg z,

  в которой x и h — составляющие отклонения отвеса в пункте наблюдения в плоскостях меридиана и первого вертикала, j — широта этого пункта и z — зенитное расстояние наблюдаемой точки в пространстве. Эта формула при z, близком к 90°, приводит к уравнению Лапласа для определения Л. а.: a — А = htgj (назван по имени П. Лапласа, установившего это соотношение).

  Лит.: Красовский Ф. Н., Руководство по высшей геодезии, 2 изд., ч. 2, М., 1942.

  Л. А. Изотов.

Лапласа гипотеза

Лапла'са гипо'теза, космогоническая гипотеза об образовании Солнечной системы — Солнца, планет и их спутников из вращающейся и сжимающейся газовой туманности, высказанная П. Лапласом в 1796 в популярной книге «Изложение системы мира» (т. 1—2). Согласно Л. г., в результате ускорения вращения при сжатии разряженная внешняя часть туманности (протяжённая атмосфера образующегося Солнца) становится всё более сплюснутой, а когда центробежная сила на экваторе стала равной по величине силе тяготения, она приняла чечевицеобразную форму. Вещество на остром ребре чечевицы перестало участвовать в дальнейшем сжатии, а оставалось на месте, образуя газовый диск. Затем он разделился на отдельные кольца и вещество каждого кольца собралось в сгусток, превратившийся затем в планету. При сжатии этих сгустков процесс зачастую повторялся, приводя к образованию спутников планет. Центральный сгусток туманности превратился в Солнце.

  Л. г. не смогла объяснить медленное вращение Солнца, прямое вращение планет, наличие спутников с обратным движением и спутников, период обращения которых меньше периода вращения планеты. Привлечение современных астрофизических данных позволило в середине 20 в. по-новому развить идею Лапласа об отделении вещества от сжимающегося протосолнца  в результате наступления ротационной неустойчивости. При этом механизм формирования планет оказался отличным от предполагавшегося Лапласом. Л. г. сыграла выдающуюся роль в истории науки. См. Космогония.

  Б. Ю. Левин.

Лапласа закон

Лапла'са зако'н, зависимость перепада гидростатического давления Dp на поверхности раздела двух фаз (жидкость — жидкость, жидкость — газ или пар) от межфазного поверхностного натяжения s и средней кривизны поверхности e в рассматриваемой точке: Dр=р1— р2= es, где p1 — давление с вогнутой стороны поверхности, p2 — с выпуклой стороны, e = , R1 и R2 — радиусы кривизны двух взаимно перпендикулярных нормальных сечений поверхности в данной точке (см. рис.). Л. з., установленный в 1806 П. Лапласом, определяет величину капиллярного давления и позволяет тем самым записать условия механического равновесия для подвижных (жидких) поверхностей раздела (см. Капиллярные явления).

Применение закона Лапласа к поверхности раздела вода — пар в капилляре: р = р1 - p2 ; R1 и R2 — радиусы кривизны в точке О вогнутой поверхности (R1 = ОА и R2 = ОВ) определяются в двух взаимно перпендикулярных сечениях ACD и BEF.

Лапласа неизменяемая плоскость

Лапла'са неизменя'емая пло'скость, плоскость, проходящая через центр масс Солнечной системы перпендикулярно вектору момента количества движения. Понятие Л. н. п. было введено в 1789 П. Лапласом, указавшим на преимущества её использования в качестве основной координатной плоскости при изучении движений тел Солнечной системы: в то время как положения плоскостей эклиптики и экватора непрерывно изменяются, Л. н. п. сохраняет своё положение в пространстве неизменным. Для того чтобы определить положение Л. н. п. относительно плоскости эклиптики, необходимо знать числовые значения масс всех планет. Поскольку с развитием астрономических исследований эти величины постепенно уточняются, то и параметры, определяющие положение Л. н. п., несколько изменяются. Положение Л. п. п. относительно эклиптики в эпоху 1950,0 определяется следующими элементами: эклиптическая долгота точки пересечения с эклиптикой W = 107° 13,3' ± 2,1’, наклон i = 1°38'49’’± 22’’.

  Г. А. Чеботарев.

Лапласа оператор

Лапла'са опера'тор, лапласиан, дельта-оператор, D-оператор, линейный дифференциальный оператор, который функции j(x1, x2,..., xn) от n переменных x1, x2,..., xn ставит в соответствие функцию

  Dj = .

  В частности, для функции j(x, y) двух переменных х, у Л. о. имеет вид

  Dj = ,

  а для функций одной переменной j(x) Л. о. совпадает с оператором второй производной

  Dj = .

  Л. о. встречается в тех задачах математической физики, где изучаются свойства изотропной однородной среды (распространение света, тепла, движение идеальной несжимаемой жидкости и т.п.).

  Уравнение Dj = 0 обычно называется Лапласа уравнением; отсюда и произошло название Л. о.

Лапласа преобразование

Лапла'са преобразова'ние, преобразование, переводящее функцию f (t) действительного переменного t (0 < t < ¥), называемую «оригиналом», в функцию

   (1)

  комплексного переменного р =s +it. Под Л. п. понимают также не только само преобразование, но и его результат — функцию F (p). Интеграл в правой части формулы (1) называется интегралом Лапласа. Он был рассмотрен П. Лапласом в ряде работ, которые объединены в его книге «Аналитическая теория вероятностей», вышедшей в 1812. Значительно раньше (в 1737) такие интегралы применял к решению дифференциальных уравнений Л. Эйлер.

  При некоторых условиях, указанных ниже, Л. п. определяет функцию f (t) однозначно, в простейших случаях — по формуле обращения:

   (2)

  Л. п. является линейным функциональным преобразованием. Из числа основных формул Л. п. можно отметить следующие:

  ,

  , n = 1, 2, …,

  , t >0.

  Л. п. в сочетании с формулой (2) его обращения применяется к интегрированию дифференциальных уравнений. В частности, в силу свойства (1) и линейности, Л. п. решения обыкновенного линейного дифференциального уравнения с постоянными коэффициентами удовлетворяет алгебраическому уравнению 1-й степени и может быть, следовательно, легко найдено. Так, если, например, у’’ + у = f (t), y (0) = y’ (0) = 0


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ЛА)"

Книги похожие на "Большая Советская Энциклопедия (ЛА)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ЛА)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.