» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)
Рейтинг:
Название:
Большая Советская Энциклопедия (ЛА)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ЛА)"

Описание и краткое содержание "Большая Советская Энциклопедия (ЛА)" читать бесплатно онлайн.








  ,

  , n = 1, 2, …,

  , t >0.

  Л. п. в сочетании с формулой (2) его обращения применяется к интегрированию дифференциальных уравнений. В частности, в силу свойства (1) и линейности, Л. п. решения обыкновенного линейного дифференциального уравнения с постоянными коэффициентами удовлетворяет алгебраическому уравнению 1-й степени и может быть, следовательно, легко найдено. Так, если, например, у’’ + у = f (t), y (0) = y’ (0) = 0

  и Y (p) = L [y], F (p) = L [f],

  то L [y’’] = p2Y (p)

  и p2Y (p) + Y (p) = F (p),

  откуда

 

  Многочисленные задачи электротехники, гидродинамики, механики, теплопроводности эффективно решаются методами, использующими Л. п.

  Л. п. нашло особенно широкое применение в обосновании операционного исчисления, в котором обычно вместо Л. п. F (p) вводится «изображение» оригинала f (t) — функция pF (p).

  Современная общая теория Л. п. строится на основе интегрирования в смысле Лебега (см. Интеграл). Для применимости Л. п. к функции f (t) необходимо, чтобы f (t) была интегрируема в смысле Лебега на любом конечном интервале (0, t), t > 0 и интеграл (1) для неё сходился хотя бы в одной точке p0 = s0 + it0. Если интеграл (1) сходится в точке р0, то он сходится во всех точках р, для которых Re (р—р0) > 0. Т. о., если интеграл (1) сходится хотя бы в одной точке плоскости p0, то либо он сходится во всей плоскости, либо существует такое число sс, что при Re p > sc интеграл (1) сходится, а при Re р < sс расходится. Число sс называется абсциссой сходимости интеграла Лапласа. F (p) — аналитическая функция в полуплоскости Re р > sс.

  Лит.: Диткин В. А. и Кузнецов П. И., Справочник по операционному исчислению. Основы теории и таблицы формул, М. — Л., 1951; Диткин В. А. и Прудников А. П., Интегральные преобразования и операционное исчисление, М., 1961; Дёч Г., Руководство к практическому применению преобразования Лапласа, пер. с нем., М., 1965.

Лапласа теорема

Лапла'са теоре'ма, простейшая из предельных теорем теории вероятностей, относящаяся к распределению отклонений частоты появления события при независимых испытаниях от его вероятности. В общем виде эта теорема доказана П. Лапласом в книге «Аналитическая теория вероятностей» (1812). Один частный случай Л. т. был известен А. Муавру (1730), в связи с чем Л. т. иногда называется теоремой Муавра — Лапласа. Формулировка Л. т. такова. Пусть при каждом из n независимых испытаний вероятность появления некоторого события Е равна р (0<р<1) и пусть m обозначает число испытаний, в которых событие Е фактически наступает; тогда вероятность неравенства

 

  при достаточно большом числе испытаний n сколь угодно мало отличается от

  .

  Если обозначить через Xk случайную величину, принимающую значение, равное 1, при появлении события Е в k-ом испытании и значение, равное 0, при его непоявлении, то m представляется как сумма независимых случайных величин m = X1 + ...+ Xn. Это позволяет рассматривать Л. т. как частный случай более общих предельных теорем теории вероятностей, в частности Ляпунова теоремы.

  Приближённые значения вероятностей, даваемые Л. т., на практике используются как точные при npq порядка нескольких десятков и большем.

  Лит. см. при ст. Предельные теоремы теории вероятностей.

  Ю. В. Прохоров.

Лапласа уравнение

Лапла'са уравне'ние, дифференциальное уравнение с частными производными

 

  где х, у, z — независимые переменные, а u = u(x, y, z) — искомая функция. Это уравнение названо по имени П. Лапласа, рассмотревшего его в работах по теории тяготения (1782). К Л. у. приводит ряд задач физики и техники. Л. у. удовлетворяют температура при стационарных процессах, потенциал электростатического поля в точках пространства, свободных от зарядов, потенциал поля тяготения в области, не содержащей притягивающих масс, и т. п. Функции, удовлетворяющие Л. у., называются гармоническими функциями. О постановке задач для Л. у. см. в ст. Краевые задачи.

Лапласов пункт

Лапла'сов пункт, точка земной поверхности, обычно пункт триангуляции или полигонометри и, в котором широта, долгота и азимут определены как из астрономических наблюдений, так и по геодезическим измерениям, отнесённым к известной системе координат, связанной с земным эллипсоидом с заданными размерами и положением в теле Земли. Между геодезическим и астрономическим азимутом и долготой существует зависимость, называется уравнением Лапласа (см. Лапласа азимут). Сопоставление астрономической широты, долготы и азимута с соответственными геодезическими величинами позволяет вывести в каждом Л. п. отклонения отвеса, которые характеризуют отклонение принятого земного эллипсоида от действительной фигуры Земли или несовпадение геодезической системы координат с системой астрономических координат, связанной с Землёй. В государственной геодезической сети СССР Л. п. принято определять через 150—200 км.

Ла-Плата (город в Аргентине)

Ла-Пла'та (La Plata) — город на В. Аргентины, на южном берегу залива Ла-Плата, административный центр провинции Буэнос-Айрес. 408,3 тыс. жителей (1970). Ж.-д. узел и важный морской порт по вывозу с.-х. продукции Пампы (зерно, мясо, шерсть, кожсырьё). Один из ведущих центров нефтеперерабатывающей и нефтехимической, а также мясохладобойной промышленности. Университет. Естественноисторический музей «Ла-Плата». Л.-П. основан в 1882.

Ла-Плата (залив)

Ла-Пла'та (исп. Río de la Plata, буквально — серебряная река), залив Атлантического океана у юго-восточного берега Южной Америки. Представляет собой эстуарий р. Парана. Длина 320 км, ширина до 220 км, глубина 10—20 м. Приливы неправильные, полусуточные, их величина до 1 м. На побережье Л.-П. — крупные города: Буэнос-Айрес (Аргентина) и Монтевидео (Уругвай).

Лаплатская низменность

Лапла'тская ни'зменность, название низменной восточной части равнин Парагвая — Параны (Центр, равнины) в Южной Америке (на востоке Гран-Чако и Пампы и в Междуречье). Простирается с С. на Ю. на 2400 км, с В. на З. на 900 км. Л. н. представляет собой синеклизу Южноамериканской платформы, заполненную мощной толщей континентальных, преимущественно кайнозойских, отложений. На С. тропический летневлажный климат, редколесья и обширные болота вдоль рек; на Ю. субтропический равномерновлажный климат, прерии и степи.

Лапоноидная раса

Лапоно'идная ра'са (от позднелат. Lapones — лапландцы и греч. éidos — вид, наружность), вариант уральской расы. Характеризуется низким ростом, очень низким лицом, выступающими скулами, вогнутой спинкой носа, небольшим процентом эпикантуса. Представители Л. р. — саамы.

Лаппаран Альбер Огюст

Лаппара'н (Lapparent) Альбер Огюст (30.12.1839, Бурж, департамент Шер, — 5.5.1908, Париж), французский геолог, член Парижской АН (1897). Окончил Высшую горную школу в Париже (1864). Основные труды по различным вопросам геологии. Автор учебных руководств по геологии, минералогии и горючим полезным ископаемым, выдержавших несколько изданий. Принимал участие в составлении детальной геологические карты Франции.

  Соч.: Traité de géologie, 5 ed., [pt.] 1—3, P., 1906; La formation des combustibles minéraux, P., 1886.

Лаппенранта

Ла'ппенранта (фин. Lappeenranta), Вильманстранд (швед. Villmanstrand), город и порт в Финляндии, в ляни Кюми, на южном берегу оз. Сайма. 51 тыс. жителей (1970), включая поселок Лауритсала (судоверфи). Деревообрабатывающая, целлюлозно-бумажная, химическая (сернокислотная), цементная, пищевая промышленность.

Лаппи

Ла'ппи (Lappi), ляни (административная единица) на С. Финляндии. Площадь 93,9 тыс. км2. Население 196 тыс. человек (1971). Административный центр — г. Рованиеми. Преобладают холмистые равнины и возвышенности. Наиболее крупная возвышенность — Манселькя. Густая сеть рек. Много озёр, наибольшее — Инари. Ландшафты северной тайги. Редко населённый и экономически мало освоенный район страны. Лесное хозяйство; очаги молочного животноводства и земледелия. На р. Кеми-Йоки каскады ГЭС. Лесозаготовки, лесопиление, деревообрабатывающая, целлюлозно-бумажная промышленность.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ЛА)"

Книги похожие на "Большая Советская Энциклопедия (ЛА)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЛА)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ЛА)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.