» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ЛИ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ЛИ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ЛИ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ЛИ)
Рейтинг:
Название:
Большая Советская Энциклопедия (ЛИ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ЛИ)"

Описание и краткое содержание "Большая Советская Энциклопедия (ЛИ)" читать бесплатно онлайн.








  Л., ограниченная сферическими поверхностями. Все параметры, определяющие оптические свойства такой Л., могут быть выражены через радиусы кривизны r1 и r2 её поверхностей, толщину Л. по оси d и показатель преломления её материала n. Например, оптическая сила и фокусное расстояние Л. задаются соотношением

   (1)

  Радиусы r1 и r2 считаются положительными, если направление от вершины Л. до центра соответствующей поверхности совпадает с направлением лучей (на рис. 1 r1 > 0, r2 < 0). Следует оговорить, что формула (1) верна лишь применительно к параксиальным лучам. При одной и той же оптической силе и том же материале форма Л. может быть различной. На рис. 2 показано несколько Л. одинаковой оптической силы и различной формы. Первые три — положительны, последние три — отрицательны. Л. называется тонкой, если её толщина d мала по сравнению с r1 и r2. Достаточно точное выражение для оптической силы такой Л. получают, отбрасывая второй член в (1).

  Положение главных плоскостей Л. относительно её вершин тоже можно определить, зная r1, r2, n и d. Расстояние между главными плоскостями мало зависит от формы и оптической силы Л. и приблизительно равно . В случае тонкой Л. это расстояние мало и практически можно считать, что главные плоскости совпадают.

  Когда положение кардинальных точек известно, положение изображения оптического точки, даваемого Л. (см. рис. 1), определяется формулами:

  x·x’ = f·f’ = -f’2,

  , (2)

  где V — линейное увеличение Л. (см. Увеличение оптическое), l и l' — расстояния от точки и её изображения до оси (положительные, если они расположены выше оси), х — расстояние от переднего фокуса до точки, x' — расстояние от заднего фокуса до изображения. Если t и t' — расстояния от главных точек до плоскостей предмета и изображения соответственно, то (т. к. х = t — f, x' = t’ — f’):

  f’/t’ + f/t = 1 (3)

  или

  1/t’ - 1/t = 1/f’.

  В тонких Л. t и f можно отсчитывать от соответствующих поверхностей Л.

  Из (2) и (3) следует, что по мере приближения изображаемой точки (действительного источника) к фокусу Л. расстояние от изображения до Л. увеличивается; собирающая Л. даёт действительное изображение точки в тех случаях, когда эта точка расположена перед фокусом; если точка расположена между фокусом и Л., её изображение будет мнимым; рассеивающая Л. всегда даёт мнимое изображение действительной светящейся точки (подробнее см. в ст. Изображение оптическое).

  Лит.: Элементарный учебник физики, под ред. Г. С. Ландсберга, 6 изд., т. 3, М., 1970; Тудоровский А. И., Теория оптических приборов, 2 изд., т. 1, М. — Л., 1949.

  Г. Г. Слюсарев.

Рис. 1 к ст. Линза.

Рис. 2 к ст. Линза.

Линза (геол.)

Ли'нза (геол.), форма залегания горных пород и руд в виде чечевицы с уменьшающейся к краям мощностью. Размеры Л. различны и колеблются от нескольких м длины и нескольких см мощности до 1 км и более длины и нескольких десятков м мощности. См. также Залегание горных пород.

Линзовая антенна

Ли'нзовая анте'нна, антенна, диаграмма направленности которой формируется за счёт разности фазовых скоростей распространения электромагнитной волны в воздухе и в материале линзы. Л. а. применяется в радиолокационных и измерительных устройствах, работающих в диапазоне сантиметровых волн. Л. а. состоит из собственно линзы и облучателя. Форма линзы зависит от коэффициента преломления n (отношения фазовых скоростей распространения радиоволн в вакууме и линзе). При n > 1 Л. а. (как и линза в оптике) называется замедляющей, а при n < 1 — ускоряющей (последняя не имеет аналогов в оптике). В качестве облучателя Л. а. обычно используется рупорная антенна, создающая сферический фронт волны, или антенные решётки, создающие цилиндрический фронт волны.

  Замедляющие Л. а. изготавливаются из высококачественных однородных диэлектрических материалов с малыми потерями (полистирол, фторопласт и др.) или из т. н. искусственных диэлектриков. Последние представляют собой систему металлических частиц различной формы, расположенных в воздухе или в однородном диэлектрике с относительной диэлектрической проницаемостью, близкой к единице. Коэффициент преломления таких искусственных диэлектриков может изменяться в широких пределах при весьма малых потерях. Ускоряющие Л. а. выполняются из металлических пластин определённой формы и не имеют аналогов в оптике. Их принцип действия объясняется зависимостью фазовой скорости электромагнитной волны, распространяющейся между параллельными металлическими пластинами, от расстояния между ними, если вектор её электрического поля параллелен пластинам. В этом случае фазовая скорость больше скорости света и коэффициент преломления меньше единицы. Для уменьшения массы и объёма Л. а. применяется зонирование её поверхностей, позволяющее также значительно уменьшить толщину Л. а. Форма и высота профилей отдельных участков (зон) линзы выбираются так, чтобы электромагнитные волны, преломленные соседними зонами линзы, выходили из неё со сдвигом фаз 360 °; в этом случае поле в раскрыве Л. а. остаётся синфазным.

  В апланатических Л. а. и Люнеберга линзе возможно управление диаграммой направленности (сканирование) без существ. искажения формы диаграммы направленности.

  О. Н. Терешин, Г. К. Галимов.

Линзовый телескоп

Ли'нзовый телеско'п, астрономический оптический инструмент, в котором изображение небесных светил строится линзовым объективом; то же, что рефрактор.

Линии второго порядка

Ли'нии второ'го поря'дка, плоские линии, декартовы прямоугольные координаты которых удовлетворяют алгебраическому уравнению 2-й степени

  a11x2 + a12xy + a22y2 + 2a13x + 2a23y + a11 = 0. (*)

  Уравнение (*) может и не определять действительного геометрического образа, но для сохранения общности в таких случаях говорят, что оно определяет мнимую Л. в. п. В зависимости от значений коэффициентов общего уравнения (*) оно может быть преобразовано с помощью параллельного переноса начала и поворота системы координат на некоторый угол к одному из 9 приведённых ниже канонических видов, каждому из которых соответствует определённый класс линий. Именно,

  нераспадающиеся линии:

   — эллипсы,

   — гиперболы,

  y2 = 2px — параболы,

   — мнимые эллипсы;

  распадающиеся линии:

   — пары пересекающихся прямых,

   — пары мнимых пересекающихся прямых,

  x2 - а2 = 0 — пары параллельных прямых,

  x2 + а2 = 0 — пары мнимых параллельных прямых,

  x2 = 0 — пары совпадающих параллельных прямых.

  Исследование вида Л. в. п. может быть проведено без приведения общего уравнения к каноническому виду. Это достигается совместным рассмотрением значений т. н. основных инвариантов Л. в. п. — выражений, составленных из коэффициентов уравнения (*), значения которых не меняются при параллельном переносе и повороте системы координат:

  , ,

  S = a11 + a22, (aij = aji).

  Так, например, эллипсы, как нераспадающиеся линии, характеризуются тем, что для них D &sup1; 0; положительное значение инварианта d выделяет эллипсы среди других типов нераспадающихся линий (для гипербол d < 0, для парабол d = 0). Различить случаи действительного или мнимого эллипсов позволяет сопоставление знаков инвариантов D и S: если D и S разных знаков, эллипс действительный; эллипс мнимый, если D и S одного знака.

  Три основные инварианта D, d и S определяют Л. в. п. (кроме случая параллельных прямых) с точностью до движения евклидовой плоскости: если соответствующие инварианты D, d и S двух линий равны, то такие линии могут быть совмещены движением. Иными словами, эти линии эквивалентны по отношению к группе движений плоскости (метрически эквивалентны).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ЛИ)"

Книги похожие на "Большая Советская Энциклопедия (ЛИ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЛИ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ЛИ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.